期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
融合t-分布随机邻域嵌入与自动谱聚类的脑功能精细分区方法 被引量:2
1
作者 胡颖 王丽嘉 聂生东 《波谱学杂志》 北大核心 2021年第3期392-402,共11页
本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析... 本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析,得到需划分脑区的功能连接模式;然后,利用t-SNE算法提取高维功能连接模式特征;最后,通过基于本征间隙的ASC算法自动确定聚类数目,并对降维后的脑区特征分类,得到精细划分的脑亚区.模拟种子区域上的实验结果表明,相较谱聚类算法,以及结合主成分分析的谱聚类算法,本文方法对脑功能体素划分更优.进一步将本方法应用到真实人脑的功能分区中,成功地将海马旁回分为左右半球各3个亚区.本研究表明使用t-SNE与ASC融合的算法可提高脑功能分区准确性,是脑功能精细分区、进而构建脑功能图谱的一种有效方法. 展开更多
关键词 静息态功能磁共振成像 功能连接 功能分区 t-分布随机邻域嵌入 自动谱聚类
下载PDF
含多种分布式电源的配电网重构优化研究 被引量:34
2
作者 刘畅 黄民翔 《电力系统保护与控制》 EI CSCD 北大核心 2013年第6期13-18,共6页
考虑多种分布式电源(DG)的影响,形成配电网重构优化的新方法。该方法以网损期望最小为优化目标,运用以配电网环路数为抗体长度的十进制编码策略及疫苗接种策略;并将多种DG的功率计算加入改进牛拉法配电网潮流计算模型中,考虑水轮机等DG... 考虑多种分布式电源(DG)的影响,形成配电网重构优化的新方法。该方法以网损期望最小为优化目标,运用以配电网环路数为抗体长度的十进制编码策略及疫苗接种策略;并将多种DG的功率计算加入改进牛拉法配电网潮流计算模型中,考虑水轮机等DG的功率可调性及风电等DG的功率随机性,得到考虑功率随机DG出力概率的网损期望;将免疫算法与邻域搜索进行融合,形成邻域搜索免疫算法,有效克服了免疫算法在迭代末期局部搜索能力差的弊端。IEEE33节点模型加入DG后计算结果表明,含多种DG的配电网通过重构可以在优化DG出力的同时实现网损期望的最小化。 展开更多
关键词 配电网重构 邻域搜索免疫算法 分布式电源 随机功率的分布式电源 功率可调的分布式电源
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
3
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
BH随机邻域嵌入在驾驶行为识别中的应用
4
作者 杨云开 范文兵 彭东旭 《计算机应用与软件》 北大核心 2021年第1期166-170,210,共6页
针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过... 针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过预处理后使用BH-SNE完成降维处理,将降维数据输入到RBFNN中识别出驾驶行为。实验结果表明,BH-SNE的效率远高于t分布式随机邻域嵌入(t-SNE),并且可视化效果优于t-SNE,该模型的整体识别率为98.8%,分类效果优于传统的机器学习算法。 展开更多
关键词 传感器数据 数据融合 数据可视化 t分布式随机邻域嵌入 径向基函数神经网络
下载PDF
基于混合智能优化算法的输变电工程全环节关键数据处理方法
5
作者 何琳 黄博 +1 位作者 申亚波 李爽 《沈阳工业大学学报》 CAS 北大核心 2024年第3期263-269,共7页
为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种... 为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种改进的随机邻域嵌入算法实现数据降维,进而引入经自适应改进的鲸鱼优化算法及粒子群算法。在交叉策略框架下,将两者相结合并得到鲸鱼粒子群混合优化算法。实验结果表明,所提方法对输变电工程全环节关键数据的处理效果较优,而与其他方法相比,其精度和效率也均具备显著优势,能够提升数据管理水平。 展开更多
关键词 输变电工程 全环节 鲸鱼粒子群混合优化算法 随机邻域嵌入算法 工程造价 关键数据 交叉策略 数据管理 层次分析法
下载PDF
基于随机投影的正交判别流形学习算法 被引量:3
6
作者 马丽 董唯光 +1 位作者 梁金平 张晓东 《郑州大学学报(理学版)》 CAS 北大核心 2016年第1期102-109,115,共9页
提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模... 提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模型,使得算法在保持LLE局部几何结构的同时,具有MMC准则判别能力.通过正交化低维特征向量可消除降维过程中的噪声影响,进而提高算法的监督判别能力.由实验结果得到,所提出的方法具有良好的降维效果,能有效避免局部降维算法对邻域参数的敏感.随机投影独立于原始高维数据,将高维数据映射到一个行单位化的随机变换矩阵的低维空间中,维持映射与原始数据的紧密关系,从理论上分析证明了在流形学习算法中采用随机投影可以高概率保证在低维空间保持高维数据信息. 展开更多
关键词 流形学习算法 邻域选择 流形距离 正交判别 局部线性嵌入 随机投影
下载PDF
基于改进CEEMDAN和t-SNE的故障特征提取方法 被引量:1
7
作者 郑惠萍 王卓 +3 位作者 彭立强 秦志英 赵月静 裴春兴 《机床与液压》 北大核心 2023年第19期216-222,共7页
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传... 针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。 展开更多
关键词 Hermite插值法 自适应噪声完备集合经验模态分解 t-分布随机邻域嵌入 故障特征提取
下载PDF
基于PCA与t-SNE特征降维的城市植被SVM识别方法 被引量:1
8
作者 于慧伶 霍镜宇 +1 位作者 张怡卓 蒋毅 《实验室研究与探索》 CAS 北大核心 2019年第12期135-140,共6页
以高光谱图像降维为研究问题,针对主成分分析法(PCA)投影结果混叠、线性不可分和t-分布式随机邻域嵌入算法(t-SNE)内存占用大、运行时间长等不足,提出了一种基于PCA与t-SNE结合的高光谱图像降维方法。设计了基于SVM的城市植被识别模型,... 以高光谱图像降维为研究问题,针对主成分分析法(PCA)投影结果混叠、线性不可分和t-分布式随机邻域嵌入算法(t-SNE)内存占用大、运行时间长等不足,提出了一种基于PCA与t-SNE结合的高光谱图像降维方法。设计了基于SVM的城市植被识别模型,有效地提高了运行速率,进而更好地提取高光谱图像的本质特征,提高了高光谱图像中城市植被的分类精度。实验选取肯尼迪航天中心(KSC)数据为对象,结果表明,PCA-t-SNE-SVM算法总体分类精度可达92.06%,Kappa系数为0.91时,分类效果最优,相较于PCA-SVM和t-SNE-SVM算法,总体分类精度分别提高了13.51%和3.33%,Kappa系数分别提高了0.15和0.04,均表现出良好的性能。 展开更多
关键词 高光谱图像分类 城市植被分类 主成分分析法 t-分布式随机邻域嵌入算法 支持向量机
下载PDF
温变下基于奇异谱分析的机电阻抗损伤识别法
9
作者 陈文捷 肖黎 屈文忠 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期113-120,201,共9页
为消除温度变化对损伤识别的影响,采用奇异谱分析(singular spectrum analysis,简称SSA)方法处理阻抗信号以分离不受温度变化影响的信号分量,提出结合t-分布随机邻域嵌入(t-distribution stochastic neighbor embedding,简称t-SNE)与K... 为消除温度变化对损伤识别的影响,采用奇异谱分析(singular spectrum analysis,简称SSA)方法处理阻抗信号以分离不受温度变化影响的信号分量,提出结合t-分布随机邻域嵌入(t-distribution stochastic neighbor embedding,简称t-SNE)与K均值聚类算法的无监督机器学习方法,进一步处理信号分量实现损伤识别。为验证该方法的可行性,以螺栓组连接的铝板结构作为实验对象进行温度变化工况下螺栓松动机电阻抗损伤识别实验。结果表明,应用SSA方法得到的信号分量能在温度变化影响下有效识别螺栓松动状态,各工况识别准确率均达到98%以上,证明了所提出方法对消除温度变化影响的有效性。 展开更多
关键词 损伤检测 机电阻抗 温度变化 奇异谱分析 t-分布随机邻域嵌入
下载PDF
基于t-SNE和核马氏距离的滚动轴承健康状态评估 被引量:6
10
作者 胡启国 杜春超 罗棚 《组合机床与自动化加工技术》 北大核心 2021年第8期57-61,共5页
针对滚动轴承在健康状态评估过程中,退化状态特征筛选和健康指数难以构建等问题,提出了一种基于t-SNE(t-distribution Stochastic Neighbor Embedding)和核马氏距离的滚动轴承健康状态评估方法。首先,利用随机森林算法筛选出重要性较高... 针对滚动轴承在健康状态评估过程中,退化状态特征筛选和健康指数难以构建等问题,提出了一种基于t-SNE(t-distribution Stochastic Neighbor Embedding)和核马氏距离的滚动轴承健康状态评估方法。首先,利用随机森林算法筛选出重要性较高的退化状态特征,并构建高维相对退化状态特征;其次,为防止退化状态特征冗余对评估结果产生影响,利用t-SNE对高维相对退化状态特征集进行降维,将退化状态特征进行融合;最后,将其与等距映射(Isometric mapping,Isomap)、KPCA方法对比,以验证t-SNE流形学习算法进行退化状态特征降维的有效性与优越性,结果表明t-SNE算法具有一定优势。最终结果验证了所提方法的有效性。 展开更多
关键词 滚动轴承 退化状态特征 t-分布随机邻域嵌入算法 核马氏距离 健康状态评估
下载PDF
基于人口格网的南昌市公园可达性研究
11
作者 周曙磊 程朋根 +1 位作者 刘备 游晓烨 《江西科学》 2024年第4期749-757,911,共10页
在城市公共基础设施中,公园绿地占据着重要的位置。通过对公园空间布局的可达性研究,有助于确保城市居民更为便捷、更具公平性地享受公园所提供的服务和功能。根据修正后的南昌市人口格网和百度地图AOI数据,采用高斯两步移动搜索法对步... 在城市公共基础设施中,公园绿地占据着重要的位置。通过对公园空间布局的可达性研究,有助于确保城市居民更为便捷、更具公平性地享受公园所提供的服务和功能。根据修正后的南昌市人口格网和百度地图AOI数据,采用高斯两步移动搜索法对步行、骑行和公交3种出行方式下的公园可达性进行评估,结合经济学领域的基尼系数和洛伦兹曲线,对各种出行方式的公平性指数进行分析。根据公园可达性分布情况,进一步运用t-SNE降维技术,并采用高斯混合聚类方法对公园可达性和人口需求进行了组合分区。结果表明:1)在南昌市全域范围内,不同出行方式下的公园可达性存在显著差异,其中骑行可达性最高,步行可达性最低,而公交可达性受地域与时间因素影响呈现较大不确定性;2)南昌市划分为4个组合区域:低需求-低可达性区、高需求-高可达性区、高需求-低可达性区与低需求-高可达性区。此研究不仅揭示了南昌市公园可达性的空间差异,还提供了关于城市公园布局优化的见解,有助于指导未来的城市规划和公园建设工作。 展开更多
关键词 人口格网 高斯两步移动搜索法 可达性 t-分布随机邻域嵌入 高斯混合模型
下载PDF
人工智能在煤矿瓦斯风险评估中的应用
12
作者 申小明 《陕西煤炭》 2024年第9期168-172,共5页
瓦斯事故是影响煤矿安全生产的主要事故类型,为降低瓦斯事故风险,提出一种创新实用的煤矿瓦斯风险等级评价方法,为煤矿瓦斯事故的防治提供帮助。研究主要包括3个步骤,首先,收集煤矿瓦斯事故的真实数据;其次,由于属性特征较多,数据集具... 瓦斯事故是影响煤矿安全生产的主要事故类型,为降低瓦斯事故风险,提出一种创新实用的煤矿瓦斯风险等级评价方法,为煤矿瓦斯事故的防治提供帮助。研究主要包括3个步骤,首先,收集煤矿瓦斯事故的真实数据;其次,由于属性特征较多,数据集具有过于高维、大规模和高复杂性的结构特征,采用t分布随机邻域嵌入(t-SNE)方法处理复杂的高维气体事故数据;最后,利用遗传算法(GA)对支持向量机(SVM)进行优化,对煤矿瓦斯事故的严重程度进行预测。结果表明,通过对预测效果、误差分布、时间成本等性能的比较,引入t-SNE的评价模型可以准确预测89%的事故结果,同时节省约60%的时间成本。 展开更多
关键词 风险评估 煤矿瓦斯事故 t-分布随机邻域 遗传算法(GA) 支持向量机(SVM)
下载PDF
基于灰色关联分析的电力基建工程造价预测方法
13
作者 王雅琪 王佳慧 +1 位作者 张文 卫子钰 《电气技术与经济》 2024年第8期301-303,共3页
造价预测是电力基建工程前期工作中重要内容,对降低工程造价风险具有重要意义,但是现行方法 MARE比较高,预测精度比较低。基于此,针对现行方法存在的不足,提出基于灰色关联分析的电力基建工程造价预测方法。先筛选电力基建工程造价特征... 造价预测是电力基建工程前期工作中重要内容,对降低工程造价风险具有重要意义,但是现行方法 MARE比较高,预测精度比较低。基于此,针对现行方法存在的不足,提出基于灰色关联分析的电力基建工程造价预测方法。先筛选电力基建工程造价特征指标,建立工程造价预测指标体系,然后采用T分布随机邻域嵌入降维算法对预测指标降维处理,通过对预测指标灰色关联分析,优选相似特征工程,最后采用均值强化算法对特征相似的工程造价预测值计算,实现基于灰色关联分析的电力基建工程造价预测。经实验证明,本文方法预测结果 MARE值不足1%,预测值与工程造价真实情况基本贴合,在电力基建工程造价预测方面具有良好的应用前景。 展开更多
关键词 灰色关联分析 电力基建工程 造价 指标体系 T分布随机邻域嵌入降维算法 均值强化算法
下载PDF
基于可见-近红外光谱及随机森林的鸡蛋产地溯源 被引量:4
14
作者 王彬 王巧华 +3 位作者 肖壮 马逸霄 李理 杨朋 《食品工业科技》 CAS CSCD 北大核心 2017年第24期243-247,共5页
为了研究快速无损鉴别鸡蛋产地的可行性,利用可见-近红外光谱技术,采集4种湖北不同产地鸡蛋的透射光谱(500~900 nm),利用中心化、归一化、标准正态变量(SNV)、Savitzky-Golay平滑滤波(SG)和多元散射校正(MSC)、直接正交信号校正(Direct ... 为了研究快速无损鉴别鸡蛋产地的可行性,利用可见-近红外光谱技术,采集4种湖北不同产地鸡蛋的透射光谱(500~900 nm),利用中心化、归一化、标准正态变量(SNV)、Savitzky-Golay平滑滤波(SG)和多元散射校正(MSC)、直接正交信号校正(Direct Orthogonal Signal Correction,DOSC)算法对光谱数据进行预处理,采用t分布式随机邻域嵌入(t-distributed stochastic neighbor embedding,t-SNE)、主成分分析(PCA)方法对预处理后的数据降维,并将降维后的数据分别输入极限学习机(extreme learning machine,ELM)和随机森林(random forest,RF),建立鸡蛋产地溯源模型。比较两种方法建立的模型,发现运用DOSC预处理及t-SNE提取的光谱特征信息建立的RF模型鉴别效果最好,训练集和预测集的鉴别正确率分别为100%和98.33%。研究结果表明基于可见-近红外光谱技术对鸡蛋产地溯源是可行的,为进一步研究与开发鸡蛋产地溯源便携式仪器提供技术支持。 展开更多
关键词 可见-近红外光谱 鸡蛋 产地溯源 t分布式随机邻域嵌入 随机森林
下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
15
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
下载PDF
基于WPD-tSNE-SVM方法的电站机组主轴故障诊断分析
16
作者 曹康栖 李灿 《机械制造与自动化》 2023年第6期226-228,共3页
为提高电站机组主轴故障诊断效率,设计一种WPD-tSNE-SVM组合模型,采用小波包混合特征与支持向量机(SVM)对电站机组轴承开展故障诊断。研究结果表明:采用t分布式邻域嵌入方法降维数据呈现规律分布特征,说明小波包混合特征提取方法能够满... 为提高电站机组主轴故障诊断效率,设计一种WPD-tSNE-SVM组合模型,采用小波包混合特征与支持向量机(SVM)对电站机组轴承开展故障诊断。研究结果表明:采用t分布式邻域嵌入方法降维数据呈现规律分布特征,说明小波包混合特征提取方法能够满足有效性。非线性SVM多故障分类器能够满足小波包混合特征的精确故障分析,各分类器都可以实现小波包混合特征集的高效分类,以径向基核函数设置的非线性SVM诊断方式达到了更高的准确率,从而为之后的维护保养过程提供参考价值,促进维护效率的进一步提升,有效保障电站机组主轴处于稳定运行状态。根据该方法诊断主轴轴承运行故障,为后续维护保养提供指导意义,获得更高的维护效率,确保电站机组主轴运行稳定性。 展开更多
关键词 电站机组 主轴 故障诊断 小波包分解 t分布式随机邻域嵌入 支持向量机
下载PDF
基于LNN-DPC加权集成学习的转炉炼钢终点碳温软测量方法 被引量:4
17
作者 熊倩 刘辉 刘旭琛 《计算机集成制造系统》 EI CSCD 北大核心 2022年第12期3886-3898,共13页
转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进... 转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进的峰值密度聚类算法划分降维后的训练数据形成局部样本子集,构建子集与原始数据间的一一对应关系生成高斯过程回归子模型,并在原始数据子集下度量得到熵值加权的子集“质心”;其次,通过灰色关联分析选择与测试样本关联度较强的模型作为局部模型,提出关联度加权集成策略输出碳温预测结果。在实际转炉炼钢生产过程数据仿真结果下,碳含量在±0.02%的误差范围内精度达到85.2%,温度在±10℃的误差范围内精度达到84.8%。 展开更多
关键词 转炉炼钢 集成学习 t-分布随机邻域嵌入算法 局部最近邻密度峰值聚类算法 灰色关联分析 高斯过程回归
下载PDF
基于小波包混合特征和支持向量机的机床主轴轴承故障诊断研究 被引量:29
18
作者 王一鹏 陈学振 李连玉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期59-64,共6页
主轴轴承作为机床关键零部件,针对轴承故障信息比较复杂难以获取,并且故障数据样本少问题,提出了基于小波包混合特征和支持向量机(SVM)的数控机床轴承故障诊断方法。首先对轴承振动信号进行小波包分解和重构,提取信号的混合特征构建联... 主轴轴承作为机床关键零部件,针对轴承故障信息比较复杂难以获取,并且故障数据样本少问题,提出了基于小波包混合特征和支持向量机(SVM)的数控机床轴承故障诊断方法。首先对轴承振动信号进行小波包分解和重构,提取信号的混合特征构建联合特征空间;然后使用t-分布式随机邻域嵌入法对样本数据进行降维,观测混合特征样本集的数据分布;最后使用非线性SVM进行故障分类。经过现场数控机床数据验证,对主轴轴承内圈、外圈和滚珠的故障识别的准确率为100%,与线性SVM以及BP神经网络的故障分类效果来比较,该方法能更加精准地识别出了数控机床主轴轴承故障。 展开更多
关键词 数控机床 小波包 t-分布式随机邻域嵌入 支持向量机
下载PDF
基于支持向量机的文本分类 被引量:1
19
作者 陈佳希 《电子世界》 2017年第7期64-64,共1页
随着人工智能方法的发展,智能理解语义的自然语言处理方法日趋成熟,而用计算机对大规模文本进行分类挖掘的需求也与日俱增。本文中,我利用分词工具对人工智能领域的部分论文的摘要进行了分词,并根据其刊登的期刊,对其进行预分类,准备训... 随着人工智能方法的发展,智能理解语义的自然语言处理方法日趋成熟,而用计算机对大规模文本进行分类挖掘的需求也与日俱增。本文中,我利用分词工具对人工智能领域的部分论文的摘要进行了分词,并根据其刊登的期刊,对其进行预分类,准备训练数据集和测试数据集。我主要用该数据做了以下工作:首先分词,利用词向量模型对论文摘要分词;然后对文本分类,由支持向量机根据期刊对人工智能的子领域的论文分类;最后进行可视化,利用t-分布邻域嵌入算法工具降维处理。通过以上方法,可以看清人工智能领域论文之间的关系,也证实了支持向量机和具备降维可视化作用的t-分布邻域嵌入算法对文档的分类和处理作用。 展开更多
关键词 文本挖掘 词向量 TF-IDF 支持向量机 t-分布邻域嵌入算法
下载PDF
基于深度学习构建结直肠息肉诊断自动分类模型
20
作者 陈健 张子豪 +4 位作者 卢勇达 夏开建 王甘红 刘罗杰 徐晓丹 《中华诊断学电子杂志》 2024年第1期9-17,共9页
目的探讨基于深度学习的结直肠息肉诊断自动分类模型的构建。方法收集2018年1月至2023年1月在苏州市3个内镜中心的不同图像增强内镜(IEE)技术下的结肠镜图像957张(常熟市第一人民医院537张,常熟市中医院359张,苏州大学附属第一医院61张)... 目的探讨基于深度学习的结直肠息肉诊断自动分类模型的构建。方法收集2018年1月至2023年1月在苏州市3个内镜中心的不同图像增强内镜(IEE)技术下的结肠镜图像957张(常熟市第一人民医院537张,常熟市中医院359张,苏州大学附属第一医院61张),依据病理结果分为正常组、增生性息肉组和腺瘤性息肉组。利用DenseNet-121、EfficientNet、resnet101和resnet504种卷积神经网络(CNN)框架,构建深度学习模型,并评估其与经验不同的内镜医师的准确率、召回率、精确度、F1值和读片时间。结果EfficientNet在4个模型中最为优越,准确率0.961,召回率0.968,精确度0.959,F1值0.962,在读图用时方面,所有模型完成图像自动诊断任务的平均时间为(4.08±0.63)s,远快于内镜医师所需的平均时间[(291.10±17.68)s],差异有统计学意义(t=-36.22,P<0.01)。将EfficientNet预训练模型经迁移学习后的模型命名为“EffiPolyNet”,其在腺瘤性息肉上有少量误分类,但准确率达0.90,AUC为0.98。t-分布随机邻域嵌入(t-SNE)可视化揭示了腺瘤性和增生性息肉间部分语义特征重叠,解释了模型的误分类。利用梯度加权分类激活映射(Grad-CAM)和沙普利可加性解释(SHAP),揭示了模型决策中的关键图像区域和特征的相对重要性。结论EffiPolypNet模型在多种IEE技术的结直肠息肉性质分类中表现出色,为结肠镜光学诊断提供了高效且可靠的支持。 展开更多
关键词 深度学习 卷积神经网络 息肉 消化内镜 t-分布随机邻域嵌入
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部