Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cle...Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs(tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points:(1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes.(2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress.(3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma.(4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.展开更多
Liver cancer presents divergent clinical behaviors.There remain opportunities for molecular markers to improve liver cancer diagnosis and prognosis,especially since tRNA-derived small RNAs(tsRNA)have rarely been studi...Liver cancer presents divergent clinical behaviors.There remain opportunities for molecular markers to improve liver cancer diagnosis and prognosis,especially since tRNA-derived small RNAs(tsRNA)have rarely been studied.In this study,a random forests(RF)diagnostic model was built based upon tsRNA profiling of paired tumor and adjacent normal samples and validated by independent validation(IV).A LASSO model was used to developed a seven-tsRNA-based risk score signature for liver cancer prognosis.Model performance was evaluated by a receiver operating characteristic curve(ROC curve)and Precision-Recall curve(PR curve).The five-tsRNA-based RF diagnosis model had area under the receiver operating characteristic curve(AUROC)88%and area under the precision–recall curve(AUPR)87%in the discovery cohort and 87%and 86%in IV-AUROC and IV-AUPR,respectively.The seven-tsRNA-based prognostic model predicts the overall survival of liver cancer patients(Hazard Ratio 2.02,95%CI 1.36–3.00,P<0.001),independent of standard clinicopathological prognostic factors.Moreover,the model successfully categorizes patients into high-low risk groups.Diagnostic and prognostic modeling can be reliably utilized in the diagnosis of liver cancer and high-low risk classification of patients based upon tsRNA characterization.展开更多
随着测序技术的发展和对tRNA衍生小分子(tRNA-derived small RNA,tsRNAs)的深入研究,越来越多的tsRNAs及其功能在各物种中被鉴定。tsRNAs根据切割位点的不同可分为tRNA衍生片段(tRNA-derived fragment,tRF)和tRNA应激诱导RNA(tRNA-deriv...随着测序技术的发展和对tRNA衍生小分子(tRNA-derived small RNA,tsRNAs)的深入研究,越来越多的tsRNAs及其功能在各物种中被鉴定。tsRNAs根据切割位点的不同可分为tRNA衍生片段(tRNA-derived fragment,tRF)和tRNA应激诱导RNA(tRNA-derived stress-induced RNA,tiRNA),其中tRF是一类具有调节功能的非编码RNA。为了加深对tRF的研究,近年来一些基于测序数据的tRF鉴定方法和相关数据库不断涌现,前者主要包括Telonis等人的算法和tDRmapper方法,后者主要有tRFdb、tRF2Cancer和MINTbase等。同时这两者为tRF的深入研究提供了更有效的工具。大量的研究表明,tRF主要以类似miRNA的方式对RNA、DNA及蛋白质进行调节,但也存在特异的作用方式。随着对这三者的深入研究,研究人员发现tRF在人类疾病的各种生物过程中也扮演着重要的角色,例如可以作为生物标志物。因此本文主要对tRF的鉴定方法、数据库、对靶分子的调节机制及其与人类疾病的关系作一综述。展开更多
Gastric cancer(GC)is one of the most common gastrointestinal tumors.As a newly discovered type of non-coding RNAs,transfer RNA(tRNA)-derived small RNAs(tsRNAs)play a dual biological role in cancer.Our previous studies...Gastric cancer(GC)is one of the most common gastrointestinal tumors.As a newly discovered type of non-coding RNAs,transfer RNA(tRNA)-derived small RNAs(tsRNAs)play a dual biological role in cancer.Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC.In this work,we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation,migration,and invasion of GC cells in vitro.The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3'untranslated region(UTR)site of acyl-coenzyme A dehydrogenase short/branched chain(ACADSB).In addition,ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells.Next,we used Gene Ontology(GO),the Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Set Enrichment Analysis(GSEA)to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis.Finally,we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level,as well as the changes in reactive oxygen species(ROS)levels by flow cytometry.In summary,this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB,thereby promoting GC progression.It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens upnew possibilities for treatment.展开更多
Apart from their primordial role in protein synthesis,t RNAs can be cleaved to produce t RNA-derived small RNAs(ts RNAs).The biological functions of ts RNAs in plants remain largely unknown.In this study,we developed ...Apart from their primordial role in protein synthesis,t RNAs can be cleaved to produce t RNA-derived small RNAs(ts RNAs).The biological functions of ts RNAs in plants remain largely unknown.In this study,we developed Rtc B ligation-based small RNA(s RNA)sequencing,a method that captures and distinguishes between 3′-2′,3′-cyclic-phosphate(c P)/phosphate(P)-terminated s RNAs and 3′-OH-terminated s RNAs,and profiled 5′ts RNAs and 5′t RNA halves in Arabidopsis thaliana.We found that Arabidopsis 5′ts RNAs and 5′t RNA halves predominantly contain a c P at the 3′end and require S-like RNase 1(RNS1)and RNS3 for their production.One of the most abundant 5′ts RNAs,5′ts R-Ala,by associating with AGO1,negatively regulates Cytochrome P45071 A13(CYP71 A13)expression and camalexin biosynthesis to repress anti-fungal defense.Interestingly,5′ts R-Ala is downregulated upon fungal infection.Our study provides a global view of 5′ts RNAs and 5′t RNA halves in Arabidopsis and unravels an important role of a 5′ts RNA in regulating anti-fungal defense.展开更多
tRNA-derived small RNAs(tsRNAs)are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases.However,their exact presence and function in hepatocellular carcinoma(HCC)remain unclear...tRNA-derived small RNAs(tsRNAs)are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases.However,their exact presence and function in hepatocellular carcinoma(HCC)remain unclear.Here,differentially expressed tsRNAs in HCC were profiled.A novel tsRNA,tRNAGln-TTG derived 5′-tiRNA-Gln,is significantly downregulated,and its expression level is correlated with progression in patients.In HCC cells,5′-tiRNA-Gln overexpression impaired the proliferation,migration,and invasion in vitro and in vivo,while 5′-tiRNA-Gln knockdown yielded opposite results.5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I(EIF4A1),which unwinds complex RNA secondary structures during translation initiation,causing the partial inhibition of translation.The suppressed downregulated proteins include ARAF,MEK1/2 and STAT3,causing the impaired signaling pathway related to HCC progression.Furthermore,based on the construction of a mutant 5′-tiRNA-Gln,the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation.Clinically,5′-tiRNA-Gln expression level is negatively correlated with ARAF,MEK1/2,and STAT3 in HCC tissues.Collectively,these findings reveal that 5′-tiRNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular Gquadruplex structure,and this process partially inhibits translation and HCC progression.展开更多
基金supported by the National Natural Science Foundation of China,No.81870979(to JJL),No.81271366(to MLY)the National Key R&D Program of China,No.2018YFF0301104(to JJL)+4 种基金the Special Fund for Basic Scientific Research of Central Public Research Institutes of China,No.2018CZ-1(to JJL)the Basic Scientific Research Foundation of China Rehabilitation Research Center,No.2018ZX-30(to FG)the Scientific Research Foundation of CRRC,No.2012C-1(to JJL)the Major Science and Technology Project of Beijing of China,No.D161100002816004(to JJL)the Special Capital Health Research and Development of China,No.2018-1-6011(to JJL)
文摘Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs(tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points:(1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes.(2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress.(3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma.(4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
基金This work was also supported by the NIH Grants(No.5P30GM114737,P20GM103466,U54MD007584 and 2U54MD007601)Natural Science Foundation of Hubei Province(No.2019CFB417).
文摘Liver cancer presents divergent clinical behaviors.There remain opportunities for molecular markers to improve liver cancer diagnosis and prognosis,especially since tRNA-derived small RNAs(tsRNA)have rarely been studied.In this study,a random forests(RF)diagnostic model was built based upon tsRNA profiling of paired tumor and adjacent normal samples and validated by independent validation(IV).A LASSO model was used to developed a seven-tsRNA-based risk score signature for liver cancer prognosis.Model performance was evaluated by a receiver operating characteristic curve(ROC curve)and Precision-Recall curve(PR curve).The five-tsRNA-based RF diagnosis model had area under the receiver operating characteristic curve(AUROC)88%and area under the precision–recall curve(AUPR)87%in the discovery cohort and 87%and 86%in IV-AUROC and IV-AUPR,respectively.The seven-tsRNA-based prognostic model predicts the overall survival of liver cancer patients(Hazard Ratio 2.02,95%CI 1.36–3.00,P<0.001),independent of standard clinicopathological prognostic factors.Moreover,the model successfully categorizes patients into high-low risk groups.Diagnostic and prognostic modeling can be reliably utilized in the diagnosis of liver cancer and high-low risk classification of patients based upon tsRNA characterization.
基金was supported by the National Natural Science Foundation of China(Nos.82272411 and 82072363)the Jiangsu Provincial Medical Key Discipline(Laboratory)(No.ZDXK202240)the Science and Technology Project of Jiangsu Province(No.BE2023741),China。
文摘Gastric cancer(GC)is one of the most common gastrointestinal tumors.As a newly discovered type of non-coding RNAs,transfer RNA(tRNA)-derived small RNAs(tsRNAs)play a dual biological role in cancer.Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC.In this work,we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation,migration,and invasion of GC cells in vitro.The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3'untranslated region(UTR)site of acyl-coenzyme A dehydrogenase short/branched chain(ACADSB).In addition,ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells.Next,we used Gene Ontology(GO),the Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Set Enrichment Analysis(GSEA)to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis.Finally,we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level,as well as the changes in reactive oxygen species(ROS)levels by flow cytometry.In summary,this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB,thereby promoting GC progression.It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens upnew possibilities for treatment.
基金supported by the National Natural Science Foundation of China(31801074,31788103)。
文摘Apart from their primordial role in protein synthesis,t RNAs can be cleaved to produce t RNA-derived small RNAs(ts RNAs).The biological functions of ts RNAs in plants remain largely unknown.In this study,we developed Rtc B ligation-based small RNA(s RNA)sequencing,a method that captures and distinguishes between 3′-2′,3′-cyclic-phosphate(c P)/phosphate(P)-terminated s RNAs and 3′-OH-terminated s RNAs,and profiled 5′ts RNAs and 5′t RNA halves in Arabidopsis thaliana.We found that Arabidopsis 5′ts RNAs and 5′t RNA halves predominantly contain a c P at the 3′end and require S-like RNase 1(RNS1)and RNS3 for their production.One of the most abundant 5′ts RNAs,5′ts R-Ala,by associating with AGO1,negatively regulates Cytochrome P45071 A13(CYP71 A13)expression and camalexin biosynthesis to repress anti-fungal defense.Interestingly,5′ts R-Ala is downregulated upon fungal infection.Our study provides a global view of 5′ts RNAs and 5′t RNA halves in Arabidopsis and unravels an important role of a 5′ts RNA in regulating anti-fungal defense.
基金generously supported by the National Natural Science Foundation of China(Nos.82072650 and 81902405)Key Research and Development Program of Zhejiang Province(No.2021C03121)+1 种基金2019 Liver Cancer Diagnosis and Treatment Communication Fund(No.CXPJJH11900009-12)Grant from Health Commission of Zhejiang Province(No.JBZX-202004).
文摘tRNA-derived small RNAs(tsRNAs)are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases.However,their exact presence and function in hepatocellular carcinoma(HCC)remain unclear.Here,differentially expressed tsRNAs in HCC were profiled.A novel tsRNA,tRNAGln-TTG derived 5′-tiRNA-Gln,is significantly downregulated,and its expression level is correlated with progression in patients.In HCC cells,5′-tiRNA-Gln overexpression impaired the proliferation,migration,and invasion in vitro and in vivo,while 5′-tiRNA-Gln knockdown yielded opposite results.5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I(EIF4A1),which unwinds complex RNA secondary structures during translation initiation,causing the partial inhibition of translation.The suppressed downregulated proteins include ARAF,MEK1/2 and STAT3,causing the impaired signaling pathway related to HCC progression.Furthermore,based on the construction of a mutant 5′-tiRNA-Gln,the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation.Clinically,5′-tiRNA-Gln expression level is negatively correlated with ARAF,MEK1/2,and STAT3 in HCC tissues.Collectively,these findings reveal that 5′-tiRNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular Gquadruplex structure,and this process partially inhibits translation and HCC progression.