A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigate...A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the; polyacrylate emulsions were also studied. The results show that the 180 degrees C peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.展开更多
Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high sali...Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.展开更多
A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). T...A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.展开更多
文摘A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the; polyacrylate emulsions were also studied. The results show that the 180 degrees C peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.
基金support of the National Natural Science Foundation of China(No.52120105007)the National Key Research and Development Program of China(2019Y FA0708700)are gratefully acknowledged.
文摘Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.
基金Funded by the National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC 13-JS-15-034)
文摘A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.