BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
Background: Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile prote...Background: Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile proteomics differences between cholelithiasis patients with obesity and normal body weight. Methods: Bile samples from 20 patients(10 with obesity and 10 with normal body weight) who underwent laparoscopic cholecystectomy at our center were subjected to tandem mass tag labeling(TMT) and liquid chromatography-tandem mass spectrometry(LC-MS/MS), followed by further bioinformatic analysis. Results: Among the differentially expressed proteins, 23 were upregulated and 67 were downregulated. Bioinformatic analysis indicated that these differentially expressed proteins were mainly involved in cell development, inflammatory responses, glycerolipid metabolic processes, and protein activation cascades. In addition, the activity of the peroxisome proliferator-activated receptor(PPAR, a subfamily of nuclear receptors) signaling pathway was decreased in the Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Two downregulated proteins in the PPAR signaling pathway, APO A-Ⅰ and APO A-Ⅱ, were confirmed using enzyme-linked immunosorbent assay. Conclusions: The PPAR signaling pathway may play a crucial role in the development of cholelithiasis among patients with obesity. Furthermore, biliary proteomics profiling of gallstones patients with obesity is revealed, providing a reference for future research.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition a...Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.展开更多
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh...Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis.展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between pr...Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.展开更多
Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be e...Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be effective in treating BLCA.The purpose of this study was to investigate the potential treating mechanisms of Puerarin on BLCA.Methods:The cell counting kit 8 assay and flow cytometry were performed to confirm Puerarin’s ability to suppress BLCA.The differentially expressed proteins(DEPs)were obtained by Tandem Mass Tags technology and functional enrichment analysis performed by R studio.The most enriched pathways were selected for study and the DEPs were screened out.Protein-protein interaction network maps were created using String and Cytoscape and key proteins,which will be analyzed for survival,expression,and upstream transcription factor prediction,were screened out using the cytoHubba plugin.CHEA3 was used to obtain upstream transcription factor validated by molecular docking and western blotting experiments.Results:Cell counting kit 8 showed that Puerarin inhibited BLCA cells,with 50%inhibitory concentration of 218μmol/L in T24 and 198μmol/L in 5637.Flow cytometry reveals that Puerarin blocks T24 and 5637 cells in G1 phase.1,385 DEPs were obtained and the enrichment analysis revealed that cell cycle and DNA replication were the two main areas in which DEPs were enriched.Cyclin-B-cyclin dependent kinase 1(CDK1),cyclin B1(CCNB1),and polo-like kinase 1(PLK1)were identified as key proteins,and their upstream transcription factor was predicted to be centromere protein A(CENPA).Puerarin’s binding energy to CENPA was determined by molecular docking to be−6.3 kcal/mol,indicating a strong binding interaction.Western blot showed that Puerarin significantly reduced the expression of CENPA.Conclusion:We hypothesize that Puerarin may inhibit the proliferation of bladder cancer cells by inhibiting CENPA expression to regulate PLK1 and CCNB1 expression,thereby affecting cell cycle.展开更多
In the early 20th century,French vice-consul George Souliéde Morant encountered acupuncture during his visit to China,and then brought it back to France.After more than a century,his collection was transported fr...In the early 20th century,French vice-consul George Souliéde Morant encountered acupuncture during his visit to China,and then brought it back to France.After more than a century,his collection was transported from Paris,France to Kunming,China,and later recognized as a Chinese national third-class precious cultural heritage.Currently housed in the Museum of Western Studies on Chinese Medicine at Yunnan University of Chinese Medicine,this set of instruments includes one needle holder converted from a fan-shaped holder,ten acupuncture needles,and eleven paper tags handwritten in English with names of diseases and body parts.This article attempts to present the foundational information and historical significance of this collection of this set of late Qing dynasty acupuncture instruments by reviewing the collection and related research on acupuncture instruments,consulting acupuncture professionals,measuring the detailed information of the set of instruments,and employing a method of translating and summarizing the content of the attached tags.展开更多
This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, ...This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.展开更多
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
基金Public Welfare Re-search Fund of Huzhou City(2018GYB60).
文摘Background: Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile proteomics differences between cholelithiasis patients with obesity and normal body weight. Methods: Bile samples from 20 patients(10 with obesity and 10 with normal body weight) who underwent laparoscopic cholecystectomy at our center were subjected to tandem mass tag labeling(TMT) and liquid chromatography-tandem mass spectrometry(LC-MS/MS), followed by further bioinformatic analysis. Results: Among the differentially expressed proteins, 23 were upregulated and 67 were downregulated. Bioinformatic analysis indicated that these differentially expressed proteins were mainly involved in cell development, inflammatory responses, glycerolipid metabolic processes, and protein activation cascades. In addition, the activity of the peroxisome proliferator-activated receptor(PPAR, a subfamily of nuclear receptors) signaling pathway was decreased in the Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. Two downregulated proteins in the PPAR signaling pathway, APO A-Ⅰ and APO A-Ⅱ, were confirmed using enzyme-linked immunosorbent assay. Conclusions: The PPAR signaling pathway may play a crucial role in the development of cholelithiasis among patients with obesity. Furthermore, biliary proteomics profiling of gallstones patients with obesity is revealed, providing a reference for future research.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
文摘Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.
基金partially supported by Department of Science and Technology,Science and Engineering Research Board under Teachers Associateship for Research Excellence(TARE)Scheme(File Number TAR/2023/000036).
文摘Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis.
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金supported by Central Public-Interest Scientific Institution Basal Research Fund,CAFS(2023TD74,2023TD78)the Earmarked Fund for CARS-47(CARS-47)+2 种基金Guangdong Provincial Science and Technology Plan Project(2023B0202010015)Central Public-Interest Scientific Institution Basal Research Fund,CAFS(Sanya Yazhou Bay Science and Technology City(SKJC-2020-02-013))Special Funds for Promoting Economic Development in Guangdong Province(For Modern Fishery)(YueNong 2019B14).
文摘Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.
基金supported by National Natural Science Fund Item Number(82004110)Xuzhou Science and Technology Plan Project(KC22096)+3 种基金China Postdoctoral Science Foundation(2022M722674)Xuzhou Medical Reserve Talents Project(XWRCHT20220009)the Xuzhou Clinical Medicine Expert Team Project(2018TD004)Peixian Science and Technology Program(P202410)。
文摘Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be effective in treating BLCA.The purpose of this study was to investigate the potential treating mechanisms of Puerarin on BLCA.Methods:The cell counting kit 8 assay and flow cytometry were performed to confirm Puerarin’s ability to suppress BLCA.The differentially expressed proteins(DEPs)were obtained by Tandem Mass Tags technology and functional enrichment analysis performed by R studio.The most enriched pathways were selected for study and the DEPs were screened out.Protein-protein interaction network maps were created using String and Cytoscape and key proteins,which will be analyzed for survival,expression,and upstream transcription factor prediction,were screened out using the cytoHubba plugin.CHEA3 was used to obtain upstream transcription factor validated by molecular docking and western blotting experiments.Results:Cell counting kit 8 showed that Puerarin inhibited BLCA cells,with 50%inhibitory concentration of 218μmol/L in T24 and 198μmol/L in 5637.Flow cytometry reveals that Puerarin blocks T24 and 5637 cells in G1 phase.1,385 DEPs were obtained and the enrichment analysis revealed that cell cycle and DNA replication were the two main areas in which DEPs were enriched.Cyclin-B-cyclin dependent kinase 1(CDK1),cyclin B1(CCNB1),and polo-like kinase 1(PLK1)were identified as key proteins,and their upstream transcription factor was predicted to be centromere protein A(CENPA).Puerarin’s binding energy to CENPA was determined by molecular docking to be−6.3 kcal/mol,indicating a strong binding interaction.Western blot showed that Puerarin significantly reduced the expression of CENPA.Conclusion:We hypothesize that Puerarin may inhibit the proliferation of bladder cancer cells by inhibiting CENPA expression to regulate PLK1 and CCNB1 expression,thereby affecting cell cycle.
基金financed by the grants from Scientific Research Fund Project of Yunnan Provincial Department of Education(No.2022Y377)Youth Fund for Humanities and Social Sciences Research Project of the Ministry of Education(No.20YJCZH246)National Social Science Fund Project(No.16BXW055)。
文摘In the early 20th century,French vice-consul George Souliéde Morant encountered acupuncture during his visit to China,and then brought it back to France.After more than a century,his collection was transported from Paris,France to Kunming,China,and later recognized as a Chinese national third-class precious cultural heritage.Currently housed in the Museum of Western Studies on Chinese Medicine at Yunnan University of Chinese Medicine,this set of instruments includes one needle holder converted from a fan-shaped holder,ten acupuncture needles,and eleven paper tags handwritten in English with names of diseases and body parts.This article attempts to present the foundational information and historical significance of this collection of this set of late Qing dynasty acupuncture instruments by reviewing the collection and related research on acupuncture instruments,consulting acupuncture professionals,measuring the detailed information of the set of instruments,and employing a method of translating and summarizing the content of the attached tags.
基金Supported by the National Natural Science Foundation of China(31471440)。
文摘This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.