期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Asymptotic Tail Probability of Randomly Weighted Sums of Dependent Random Variables with Dominated Variation
1
作者 Hai-zhong Yang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第2期277-280,共4页
This paper investigates the asymptotic behavior of tail probability of randomly weighted sums of dependent and real-valued random variables with dominated variation, where the weights form another sequence of nonnegat... This paper investigates the asymptotic behavior of tail probability of randomly weighted sums of dependent and real-valued random variables with dominated variation, where the weights form another sequence of nonnegative random variables. The result we obtain extends the corresponding result of Wang and Tang. 展开更多
关键词 randomly weighted sums tail probability dominated variation
原文传递
PRECISE RATES IN THE LAW OF THE ITERATED LOGARITHM FOR R/S STATISTICS 被引量:3
2
作者 Wu Hongmei Wen Jiwei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期461-466,共6页
Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t... Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t≤1B(t)-inf0≤t≤sB(t),and B(t) is a Brownian bridge. 展开更多
关键词 law of the iterated logarithm R/S statistics tail probability.
下载PDF
PRECISE RATE IN THE LAW OF ITERATED LOGARITHM FOR ρ-MIXING SEQUENCE 被引量:8
3
作者 Huang Wei Zhang Lixin Jiang YeDept.of Math.,Zhejiang Univ.,Hangzhou 310028,China. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2003年第4期482-488,共7页
Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞... Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function. 展开更多
关键词 mixing random variable law of iterated logarithm tail probabilities
下载PDF
Asymptotic Results for Tail Probabilities of Sums of Dependent and Heavy-Tailed Random Variables 被引量:2
4
作者 Kam Chuen YUEN Chuancun YIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第4期557-568,共12页
Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {X... Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the 展开更多
关键词 Asymptotic tail probability COPULA Heavy-tailed distribution Partialsum Risk process
原文传递
Upper tail probabilities of integrated Brownian motions 被引量:1
5
作者 GAO FuChang YANG XiangFeng 《Science China Mathematics》 SCIE CSCD 2015年第5期1091-1100,共10页
We obtain new upper tail probabilities of m-times integrated Brownian motions under the uniform norm and the Lp norm. For the uniform norm, Talagrand's approach is used, while for the Lp norm, Zolotare's appro... We obtain new upper tail probabilities of m-times integrated Brownian motions under the uniform norm and the Lp norm. For the uniform norm, Talagrand's approach is used, while for the Lp norm, Zolotare's approach together with suitable metric entropy and the associated small ball probabilities are used. This proposed method leads to an interesting and concrete connection between small ball probabilities and upper tail probabilities(large ball probabilities) for general Gaussian random variables in Banach spaces. As applications,explicit bounds are given for the largest eigenvalue of the covariance operator, and appropriate limiting behaviors of the Laplace transforms of m-times integrated Brownian motions are presented as well. 展开更多
关键词 integrated Brownian motion upper tail probability small ball probability metric entropy
原文传递
Precise Rates in the Law of the Logarithm for the Moment Convergence in Hilbert Spaces 被引量:2
6
作者 Ke Ang FU Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期191-208,共18页
Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, fo... Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑. 展开更多
关键词 the law of the logarithm moment convergence tail probability strong approximation
原文传递
Strong Convergence for Weighted Sums of Negatively Associated Arrays 被引量:2
7
作者 Hanying LIANG Jingjing ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第2期273-288,共16页
Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary a... Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented. 展开更多
关键词 tail probability Negatively associated random variable Weighted sum
原文传递
Random difference equations with subexponential innovations 被引量:3
8
作者 TANG QiHe YUAN ZhongYi 《Science China Mathematics》 SCIE CSCD 2016年第12期2411-2426,共16页
We consider the random difference equations S =_d(X + S)Y and T =_dX + TY, where =_ddenotes equality in distribution, X and Y are two nonnegative random variables, and S and T on the right hand side are independent of... We consider the random difference equations S =_d(X + S)Y and T =_dX + TY, where =_ddenotes equality in distribution, X and Y are two nonnegative random variables, and S and T on the right hand side are independent of(X, Y). Under the assumptions that X follows a subexponential distribution with a nonzero lower Karamata index, that Y takes values in [0, 1] and is not degenerate at 0 or 1, and that(X, Y) fulfills a certain dependence structure via the conditional tail probability of X given Y, we derive some asymptotic formulas for the tail probabilities of the weak solutions S and T to these equations. In doing so we also obtain some by products which are interesting in their own right. 展开更多
关键词 asymptotics Karamata index long tail random difference equation subexponentiality tail probability uniformity
原文传递
Complete Moment and Integral Convergence for Sums of Negatively Associated Random Variables 被引量:20
9
作者 Han Ying LIANG De Li LI Andrew ROSALSKY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第3期419-432,共14页
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergenc... For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence. 展开更多
关键词 Baum-Katz's law Lai's law complete moment convergence complete integral convergence convergence rate of tail probabilities sums of identica/ly distributed and negatively associated random variables
原文传递
Precise Asymptotics in the Baum-Katz and Davis Laws of Large Numbers of ρ-mixing Sequences 被引量:10
10
作者 Wei HUANG Ye JIANG Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1057-1070,共14页
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d... Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2. 展开更多
关键词 ρ-mixing random variable tail probabilities Baum-Katz law Davis law
原文传递
On the Rates of the Other Law of the Logarithm
11
作者 Li-Xin ZHANG You-You CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第4期781-792,共12页
Let X, X1, X2,… be i.i.d, random variables, and set Sn =X1+…+Xn,Mn=maxk≤n|Sk|,n≥1.Let an=o(√log n).By using the strong approximation, we prove that, if EX = 0,
关键词 Complete convergence tail probabilities of sums of i.i.d random variables the other lawof the logarithm strong approximation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部