Viterbi decoding is widely used in many radio systems. Because of the large computation complexity, it is usually implemented with ASIC chips, FPGA chips, or optimized hardware accelerators. With the rapid development...Viterbi decoding is widely used in many radio systems. Because of the large computation complexity, it is usually implemented with ASIC chips, FPGA chips, or optimized hardware accelerators. With the rapid development of the multicore technology, multicore platforms become a reasonable choice for software radio (SR) systems. The Cell Broadband Engine processor is a state-of-art multi-core processor designed by Sony, Toshiba, and IBM. In this paper, we present a 64-state soft input Viterbi decoder for WiMAX SR Baseband system based on the Cell processor. With one Synergistic Processor Element (SPE) of a Cell Processor running at 3.2GHz, our Viterbi decoder can achieve the throughput up to 30Mb/s to decode the tail-biting convolutional code. The performance demonstrates that the proposed Viterbi decoding implementation is very efficient. Moreover, the Viterbi decoder can be easily integrated to the SR system and can provide a highly integrated SR solution. The optimization methodology in this module design can be extended to other modules on Cell platform.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
In this paper, we discuss some trellis properties for codes over a finite Abelian group, which are the generalization of the corresponding trellis properties for linear codes over a field. Also, we also investigate di...In this paper, we discuss some trellis properties for codes over a finite Abelian group, which are the generalization of the corresponding trellis properties for linear codes over a field. Also, we also investigate difficulties when we try to generalize a property of a tail-biting trellis for a linear code over a field to a group code.展开更多
文摘Viterbi decoding is widely used in many radio systems. Because of the large computation complexity, it is usually implemented with ASIC chips, FPGA chips, or optimized hardware accelerators. With the rapid development of the multicore technology, multicore platforms become a reasonable choice for software radio (SR) systems. The Cell Broadband Engine processor is a state-of-art multi-core processor designed by Sony, Toshiba, and IBM. In this paper, we present a 64-state soft input Viterbi decoder for WiMAX SR Baseband system based on the Cell processor. With one Synergistic Processor Element (SPE) of a Cell Processor running at 3.2GHz, our Viterbi decoder can achieve the throughput up to 30Mb/s to decode the tail-biting convolutional code. The performance demonstrates that the proposed Viterbi decoding implementation is very efficient. Moreover, the Viterbi decoder can be easily integrated to the SR system and can provide a highly integrated SR solution. The optimization methodology in this module design can be extended to other modules on Cell platform.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.
基金Supported by the National Natural Science Foundation of China (No. 60772131)Shanghai Pujian Talent Program (No. 06PJ14009)Fox Ying Yung Education Foundation (No. 114401) and NCET'08.
文摘In this paper, we discuss some trellis properties for codes over a finite Abelian group, which are the generalization of the corresponding trellis properties for linear codes over a field. Also, we also investigate difficulties when we try to generalize a property of a tail-biting trellis for a linear code over a field to a group code.