Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rel...Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.展开更多
Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,...Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation.展开更多
Automatic extraction of tailing ponds from Very High-Resolution(VHR)remotely sensed images is vital for mineral resource management.This study proposes a Pseudo-Siamese Visual Geometry Group Encoder-Decoder network(PS...Automatic extraction of tailing ponds from Very High-Resolution(VHR)remotely sensed images is vital for mineral resource management.This study proposes a Pseudo-Siamese Visual Geometry Group Encoder-Decoder network(PSVED)to achieve high accuracy tailing ponds extraction from VHR images.First,handcrafted feature(HCF)images are calculated from VHR images based on the index calculation algorithm,highlighting the tailing ponds'signals.Second,considering the information gap between VHR images and HCF images,the Pseudo-Siamese Visual Geometry Group(Pseudo-Siamese VGG)is utilized to extract independent and representative deep semantic features from VHR images and HCF images,respectively.Third,the deep supervision mechanism is attached to handle the optimization problem of gradients vanishing or exploding.A self-made tailing ponds extraction dataset(TPSet)produced with the Gaofen-6 images of part of Hebei province,China,was employed to conduct experiments.The results show that the proposed'method_achieves the best visual performance and accuracy for tailing ponds extraction in all the tested methods,whereas the running time of the proposed method maintains at the same level as other methods.This study has practical significance in automatically extracting tailing ponds from VHR images which is beneficial to tailing ponds management and monitoring.展开更多
基金supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.
基金provided by the Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121,973)DSI-NRF CIMERA.Yousef Ghorbani acknowledges financial support from the Centre for Advanced Mining and Metallurgy(CAMM),a strategic research environment established at the LuleåUniversity of Technology funded by the Swedish governmentWe also thank Sibanye-Stillwater Ltd.For their funding through the Wits Mining Institute(WMI).
文摘Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation.
基金supported by the National Key Research and Development Program[grant number:2022YFF1303301]The Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements[grant number:2022KFKTC001]+1 种基金The National Natural Science Foundation of China[grant number:42271480]The Fundamental Research Funds for the Central Universities[grant number:2023ZKPYDC10,BBJ2023026].
文摘Automatic extraction of tailing ponds from Very High-Resolution(VHR)remotely sensed images is vital for mineral resource management.This study proposes a Pseudo-Siamese Visual Geometry Group Encoder-Decoder network(PSVED)to achieve high accuracy tailing ponds extraction from VHR images.First,handcrafted feature(HCF)images are calculated from VHR images based on the index calculation algorithm,highlighting the tailing ponds'signals.Second,considering the information gap between VHR images and HCF images,the Pseudo-Siamese Visual Geometry Group(Pseudo-Siamese VGG)is utilized to extract independent and representative deep semantic features from VHR images and HCF images,respectively.Third,the deep supervision mechanism is attached to handle the optimization problem of gradients vanishing or exploding.A self-made tailing ponds extraction dataset(TPSet)produced with the Gaofen-6 images of part of Hebei province,China,was employed to conduct experiments.The results show that the proposed'method_achieves the best visual performance and accuracy for tailing ponds extraction in all the tested methods,whereas the running time of the proposed method maintains at the same level as other methods.This study has practical significance in automatically extracting tailing ponds from VHR images which is beneficial to tailing ponds management and monitoring.