Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety c...Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.展开更多
Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the ...Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the bearing capacity of middle pylon foundation. From the computational results, it is concluded that the caisson foundation has a good bearing capacity on thick overburden layer ground and the beating capacity can be improved assuming that the soil near the area of basal comer is reinforced.展开更多
This article presents in detail the assembling and welding process technique of the steel box girder tuyere blocks of Taizhou Bridge. The application of this process technique effectively solves the problem of welding...This article presents in detail the assembling and welding process technique of the steel box girder tuyere blocks of Taizhou Bridge. The application of this process technique effectively solves the problem of welding stress release in tuyere block assembling and welding without increasing the number of turns of the blocks and overhead welding, thus avoiding possible structural deformation due to excessive accumulation of internal welding stress, greatly reducing the repeated deformation and correction work during assembling and welding, and ensuring the weld seam quality and overall dimensions of tuvere blocks of Taizhou Bridze.展开更多
The real-time informational monitoring system is adopted in the construction of middle tower foundation of Taizhou Bridge for the first time. The geometric state of the caisson, the stress of upstream and downstream a...The real-time informational monitoring system is adopted in the construction of middle tower foundation of Taizhou Bridge for the first time. The geometric state of the caisson, the stress of upstream and downstream anchorage cables, underwater topography, the drag forces of the caisson cutting edge and frictional resistances of the sidewall and etc. are monitored in real time. According to the synthesized data analysis and decision-making system, the spatial states of the caisson are adjusted in time to locate and embed the deep water caisson precisely. The offset error of the caisson is less than 30 cm and the vertical error is 1/363 at the final stage. The control technology for construction of large caisson under deep water is concluded and would be helpful for the construction of bridge foundation in the future.展开更多
During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to main...During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to maintain progress and guarantee safety during the sinking of the caisson, water should be drained in the initial period. Subsequently, detailed information about the aquifer permeability is required to make sure that the drainage will proceed successfully, which consequently necessitates the on-site estimation of the aquifer permeability in the drainage area. Therefore, the traditional pumping test and slug test are implemented respectively on site. The comparison of computational results of these two tests indicates that they are consistent overall. Notwithstanding, as slug test can be conducted with portable facilities in a short time and the manipulation is easy and few people need to be involved, the advantages of slug test is conspicuous compared with the traditional pumping test. It could be speculated that slug test will gain a prevalent application in the measurement of aquifer permeability in the future.展开更多
A caisson foundation is applied to the north anchorage of Taizhou Yangtze River Highway Bridge of which the initial caisson sinking requires dewatering. Since the caisson foundation is quite close to nearby buildings,...A caisson foundation is applied to the north anchorage of Taizhou Yangtze River Highway Bridge of which the initial caisson sinking requires dewatering. Since the caisson foundation is quite close to nearby buildings, a system control model is established with source (sink) distribution and intensity being the object function, minimum requirements of settlement and deformation of surroundings caused by dewatering and dynamic water levels during different working procedures being constraints, and the design parameter of pumping wells being the variable,so as to lower the jeopardizing of surrounding buildings, which provides a new method for active control over settlement during dewatering. Such a method of dewatering based on system control model should be of significance for similar projects involving dewatering.展开更多
Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main c...Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.展开更多
Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, whi...Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.展开更多
The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence m...The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.展开更多
Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technica...Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.展开更多
According to the construction method of Taizhou Bridge, numerical simulation is conducted to analyze the vibration of caisson under wind and water flows to determine the main factors of the caisson vibration. Meanwhil...According to the construction method of Taizhou Bridge, numerical simulation is conducted to analyze the vibration of caisson under wind and water flows to determine the main factors of the caisson vibration. Meanwhile, the localization system of caissons and anchors of Taizhou Bridge is modeled in order to summarize the vibration mechanism of caissons under deep-water and jet-flow condition, and further pertinent vibration-control measures are proposed. The obtained results are well verified in engineering practice, and consequently the safety risk of positioning the caisson is reduced.展开更多
A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic character...A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical,lateral and torsional stiffness of the steel box girder,the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that,in general,the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical,lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic re-straints have a more significant effect on the dynamic characteristics than the central buckle,and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also,rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges.展开更多
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)
文摘Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.
基金National Science and Technology Support Program of China(No.2009BAG15B02)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the bearing capacity of middle pylon foundation. From the computational results, it is concluded that the caisson foundation has a good bearing capacity on thick overburden layer ground and the beating capacity can be improved assuming that the soil near the area of basal comer is reinforced.
文摘This article presents in detail the assembling and welding process technique of the steel box girder tuyere blocks of Taizhou Bridge. The application of this process technique effectively solves the problem of welding stress release in tuyere block assembling and welding without increasing the number of turns of the blocks and overhead welding, thus avoiding possible structural deformation due to excessive accumulation of internal welding stress, greatly reducing the repeated deformation and correction work during assembling and welding, and ensuring the weld seam quality and overall dimensions of tuvere blocks of Taizhou Bridze.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-150)
文摘The real-time informational monitoring system is adopted in the construction of middle tower foundation of Taizhou Bridge for the first time. The geometric state of the caisson, the stress of upstream and downstream anchorage cables, underwater topography, the drag forces of the caisson cutting edge and frictional resistances of the sidewall and etc. are monitored in real time. According to the synthesized data analysis and decision-making system, the spatial states of the caisson are adjusted in time to locate and embed the deep water caisson precisely. The offset error of the caisson is less than 30 cm and the vertical error is 1/363 at the final stage. The control technology for construction of large caisson under deep water is concluded and would be helpful for the construction of bridge foundation in the future.
基金Special Fund of"333"High Level Talent Training Project of Jiangsu ProvinceNational Scienceand Technology Support Program of China ( No. 2009BAG15B02) Key Programs for Science and Technology De-velopment of Chinese Transportation Industry( No. 2008-353-332-150)
文摘During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to maintain progress and guarantee safety during the sinking of the caisson, water should be drained in the initial period. Subsequently, detailed information about the aquifer permeability is required to make sure that the drainage will proceed successfully, which consequently necessitates the on-site estimation of the aquifer permeability in the drainage area. Therefore, the traditional pumping test and slug test are implemented respectively on site. The comparison of computational results of these two tests indicates that they are consistent overall. Notwithstanding, as slug test can be conducted with portable facilities in a short time and the manipulation is easy and few people need to be involved, the advantages of slug test is conspicuous compared with the traditional pumping test. It could be speculated that slug test will gain a prevalent application in the measurement of aquifer permeability in the future.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation industry ( No. 2008-353-332-160) +2 种基金Jiangsu Province College Graduate Research and Innovation Program ( No. CX08B_123Z) 2009 Natural ScienceFoundation of Hohai University ( No. 2009424011)the Fundamental Research Funds for the Central Universi-ties ( No. 2009B11814)
文摘A caisson foundation is applied to the north anchorage of Taizhou Yangtze River Highway Bridge of which the initial caisson sinking requires dewatering. Since the caisson foundation is quite close to nearby buildings, a system control model is established with source (sink) distribution and intensity being the object function, minimum requirements of settlement and deformation of surroundings caused by dewatering and dynamic water levels during different working procedures being constraints, and the design parameter of pumping wells being the variable,so as to lower the jeopardizing of surrounding buildings, which provides a new method for active control over settlement during dewatering. Such a method of dewatering based on system control model should be of significance for similar projects involving dewatering.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金the Ministry of Science and Technology of China(No.SLDRCE 08-B-04)the Fundamental Research Funds for the Central Universities and Kwang-Hua Fund for College of Civil Engineering of Tongji University
文摘Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-160)
文摘The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-150)
文摘According to the construction method of Taizhou Bridge, numerical simulation is conducted to analyze the vibration of caisson under wind and water flows to determine the main factors of the caisson vibration. Meanwhile, the localization system of caissons and anchors of Taizhou Bridge is modeled in order to summarize the vibration mechanism of caissons under deep-water and jet-flow condition, and further pertinent vibration-control measures are proposed. The obtained results are well verified in engineering practice, and consequently the safety risk of positioning the caisson is reduced.
基金Project supported by the National Natural Science Foundation of China (NSFC) (No. 50978056)the NSFC for Young Scholars (No. 50908046)the PhD Programs Foundation of MOE of China (No. 200802861012)
文摘A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical,lateral and torsional stiffness of the steel box girder,the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that,in general,the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical,lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic re-straints have a more significant effect on the dynamic characteristics than the central buckle,and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also,rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges.