期刊文献+
共找到5,069篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
1
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
2
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Study of steam heat transfer enhanced by CO_(2) and chemical agents: In heavy oil production 被引量:1
3
作者 Ya-Li Liu Chao Zhang +1 位作者 Song-Yan Li Zhao-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1030-1043,共14页
Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted... Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique. 展开更多
关键词 steam flooding Heavy oil Carbon dioxide Chemical agent Enhanced oil recovery(EOR) heat transfer
下载PDF
Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection
4
作者 Hui-Lin Xue Jian-Jie Cheng +3 位作者 Wei-Hao Ji Wen-Jin Li Han-Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期183-197,共15页
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ... An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS. 展开更多
关键词 Decoupled analysis separated heat pipe CAP1400 Finned tube radiator Passive cooling
下载PDF
The Calculation of Heating Radius and Determination of Parameters in Heavy Oil Steam Stimulation
5
作者 Aiping Zheng Xiujuan Bai +2 位作者 Yushu Zhang Haibo Cao Jiaen Lin 《石油天然气学报》 CAS 2017年第3期61-68,共8页
在稠油吞吐过程中,加热半径是热采中的重要指标,对注汽参数和生产制度起到了指导性作用。运用能量守恒原理,从热量注入方面考虑了蒸汽相变释放的气化潜热,从热量损失方面考虑井筒热量损失和顶底盖层热量损失,最终得到了新的加热半径计... 在稠油吞吐过程中,加热半径是热采中的重要指标,对注汽参数和生产制度起到了指导性作用。运用能量守恒原理,从热量注入方面考虑了蒸汽相变释放的气化潜热,从热量损失方面考虑井筒热量损失和顶底盖层热量损失,最终得到了新的加热半径计算公式。计算结果表明,加热半径受注汽参数、焖井时间、储层参数等因素影响,并系统阐述了岩层各物性参数的计算及选择方法。最后通过实例验证了该方法的计算值和试井解释出的值较为相符,为现场实际应用提供了可靠的方法。 展开更多
关键词 学术期刊 石油天然气 中国 期刊评价 学报 研制工作 项目组
下载PDF
“Three‐in‐one”strategy:Heat regulation and conversion enhancement of a multifunctional separator for safer lithium-sulfur batteries 被引量:1
6
作者 Kaiping Zhu Luhe Li +9 位作者 Pan Xue Jun Pu Liyun Wu Gengde Guo Ran Wang Ye Zhang Huisheng Peng Guo Hong Qiang Zhang Yagang Yao 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期54-67,共14页
The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned c... The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs. 展开更多
关键词 conversion enhancement heat regulation high safety lithium-sulfur batteries multifunctional separator
下载PDF
Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube 被引量:2
7
作者 Wen-Tao Li Xian-Ke Meng +1 位作者 Hao-Zhi Bian Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期55-68,共14页
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans... In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%. 展开更多
关键词 Air–steam condensation Numerical simulation heat transfer enhancement Fin tube
下载PDF
Performance Optimization of Dual Pressure Heat Recovery Steam Generator (HRSG) in the Tropical Rainforest 被引量:1
8
作者 Sidum Adumene Barinaadaa Thaddeus Lebele-Alawa 《Engineering(科研)》 2015年第6期347-364,共18页
This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performe... This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performed including logged data for a period of 12 months. The data were analysed using various energy equations. Hysys software was used to model the temperature across the heating surfaces, and MATLAB software was used to determine the heat transfer coefficient, heat duties, steam flow, effectiveness of the HRSG. The optimization technique was carried out by varying the exhaust gas flow, exhaust gas temperature, steam pressure and the theoretical introduction of duct burner for supplementary firing. The results show that between 490℃ and 526℃, the percentage increase in the overall heat absorbed in the HRSG is 37.39%. It also show that for an increase in the exhaust gas mass flow by 80 kg/s, the steam generation increase by 19.29% and 18.18% for the low and high pressure levels respectively. The overall result indicates an improvement in the HRSG energy efficiency and steam generation. As the exhaust gas mass flow and temperature increases, the steam generation and system effectiveness greatly improved under the various considerations, which satisfy the research objective. 展开更多
关键词 HRSG EFFECTIVENESS EXHAUST GAS FLOW EXHAUST GAS Temperature steam FLOW heat DUTY
下载PDF
Validation of Heat Transfer between Theoretical and Experimental from the Internal Surface of Vertical Tubes with Internal Rings Heated by Electrical Heating Coils 被引量:1
9
作者 Ramesh Chandra Nayak Manmatha K.Roul +2 位作者 Ipsita jena Ipsita Dash Ashish Ku.Patra 《Electrical Science & Engineering》 2019年第1期41-47,共7页
The comparison between experimental and theoretical heat transfer inside heated vertical channels that dissipate heat from the internal surface with and without internal rings is studied.The experimental setup consist... The comparison between experimental and theoretical heat transfer inside heated vertical channels that dissipate heat from the internal surface with and without internal rings is studied.The experimental setup consists of a circular pipe which is heated electrically by providing constant heat flux on the wall.The theoretical and experimental analysis is conducted in several pipes of same diameter but different lengths.The length of the pipe varies from 450 mm to 850 mm.The length to diameter ratios are taken as L/D=10,12.22,15.56,and 18.89.The value of imposed heat flux varies from 250 to 3340 W/m2.The internal ring thickness varies from 4 mm to 8 mm.separation distance between the internal rings varies from 75mm to 300 mm.The theoretical results are compared with experimental data to ascertain numerical accuracy of the method.The effects of L/D ratio,thickness of internal rings and separation distance on the heat transfer performance are studied.The experimental result is compared with theoretical,theoretical results are found by using ANSYS.In this study theoretical result for wall temperature along the height of tube,fluid temperature at exit of tube are compared with experimental data. 展开更多
关键词 heat transfer Natural convection PROTRUSION thickness Separation distance GEOMETRICAL SIZES
下载PDF
A Study of the Jet System of the Recovery Concerning Waste Heat of Steam Condensate
10
作者 Quo Jinji, Xing Haoxu & Ye MoupingDept. of Applied Mechanics & Eng., Zhongshan University, Guangzhou 510275, ChinaZhang Kangzhi, Wang Guojin & Chen MinjianYinglong Cement Plant, Guangdong, 513000, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第4期71-77,共7页
This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass ... This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass flow calculating equation of the jet steam and incondensable gas equation are established. The coupling function between condensate unit and recovery pump of the hot condensate with ejector is studied. The paper sets up the fluid continuity equation, heat equilibium equation and efficiency equation of the ejector and points out the technical key how the prevent hot condensate change into steam phase. When fluid passes from circulation loop through pump to export, the energy equations are obtained here. At last, signal figure of the applied examples are given and settle the techanical questions of the jet system are discussed. 展开更多
关键词 steam condensate heat equilibium equation Recovery heat Jet system
下载PDF
NATURE OF THE SURFACE HEAT TRANSFER FLUCTUATION IN A HYPERSONIC SEPARATED TURBULENT FLOW
11
作者 Wang Shifen Li Qingquan (Institute of Mechanics,Chinese Academy of Sciences) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第4期296-302,共7页
This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of... This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5x10^7/m.The separated flow was generated using finite span forward facing steps.An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make mul- ti-channel measurements of the fluctuating surface heat trtansfer within the separated flow.Conditional sampling ana- lysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness.The compression waves con- verge into a single leading shock beyond the boundary layer.The shock structure is unsteady and undergoes large-scale motion in the streamwise direction.The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave.There exists a wide band of frequency of oscillations of the shock system.Most of the frequencies are in the range of 1-3 kHz.The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave.This inter mittent phenomenon is considered as the consequence of the large-scale shock system oscillations.Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. 展开更多
关键词 hypersonic separated turbulent flow shock wave and turbulent boundary layer interaction heat transfer fluctuation unsteady shock structure
下载PDF
Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
12
作者 严兵 陈波 +1 位作者 熊永亮 彭泽瑞 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期401-410,共10页
Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice... Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed. 展开更多
关键词 dielectrophoresis microvortices Joule heating effect particle separation
下载PDF
The Research of Heat Transfer Area for 55/19 Steam Generator
13
作者 Qingsen Zhao Debing Deng +3 位作者 Shenbin Nie Wei Chen Jiayong Wang Ding Zhang 《Journal of Power and Energy Engineering》 2015年第4期417-422,共6页
A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculate... A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculated based on this method. The results show that the accuracy of partitional and overall calculation method is almost the same, but the result is different when using different calculation models. And the results are compared with the foreign companies for 55/19 steam generator. 展开更多
关键词 steam GENERATOR heat TRANSFER Area 55/19
下载PDF
Transient Response Characteristics of Separated Flow and Heat Transfer in Enlarged Rectangular Channel
14
作者 Hiroyuki Yoshikawa Shota Shirakura Mizue Munekata 《Open Journal of Fluid Dynamics》 2012年第4期278-284,共7页
Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 8.0, respectively... Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 8.0, respectively. Reynolds number of the flow is 200 and it is over the critical Reynolds number. Over the value, the flow in the symmetric channel becomes to deflect to one side of the walls. Transient response characteristics of the flow and heat transfer in the channel with the fully developed flow imposed one cycle of a pulsating fluctuation at the inlet are investigated. Vortex structure generated in the channel is visualized with a helicity isosurface. In the case of the fluctuation of Strouhal number 0.05, small streamwise vortices appear near the side walls and slightly upstream of the reattachment region of the short separation bubble. The vortices elongate and shed some vortices. These vortices attract some pairs of the streamwise vortices near the reattachment region quickly and they drift downstream along the side walls. They are inclined from the walls and are decaying gradually. It is clarified that high Nusselt number area appears and shifts downstream in accordance with the root of the vortices. 展开更多
关键词 TRANSIENT Response Pulsating FLUCTUATION SYMMETRIC ENLARGED Channel ASYMMETRIC separated Flow heat Transfer
下载PDF
Heat calculation and numerical simulation in steam mining of permafrost gas hydrate 被引量:1
15
作者 LI Bing SUN Youhong +1 位作者 GUO Wei LI Kuan 《Global Geology》 2012年第2期135-139,共5页
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St... Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW. 展开更多
关键词 天然气水合物 蒸汽加热 热量计算 数值模拟 降压开采 多年冻土区 加热功率 模拟地层
下载PDF
Research of Influence of Steam Contact Heating on Thermal Stability of a Wall of Glass Canning Jar
16
作者 Yakov G. Verkhivkert Ella I. Altman 《Journal of Environmental Science and Engineering(B)》 2012年第3期293-298,共6页
关键词 玻璃容器 水蒸汽 稳定性影响 加热 罐头瓶 罐头产品 工艺工程师 制造过程
下载PDF
An Analysis of the Influence of Protective Films on the Inner Surfaces of CCPP Headers and Steam Pipelines on Their Thermal Stress State
17
作者 Yury A. Radin Tatiana S. Kontorovich 《American Journal of Analytical Chemistry》 2017年第1期116-124,共9页
At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits ... At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits on its inner surface. However, when pipe is heating by heat carrier medium, flowing inside it, film on the inner pipe surface serve a dual protective function, protecting the pipe from corrosion and reducing its thermal stress. The article represents the results of the computational analysis of protective films influence on the thermal stressed state of headers and steam pipelines of combined-cycle power plants (CCPP) heat-recovery steam generators at different transient operating conditions particularly at startups from different initial temperature states and thermal shock. It is shown that protective films have a significant influence on the stresses magnitude and damage accumulation mainly for great temperature disturbances (for thermal shock). Calculations were carried out at various thicknesses of films and assuming that their thermal conductivity less than thermal conductivity of the steam pipelines metal. 展开更多
关键词 heat-Recovery steam GENERATOR HEADER steam Pipeline Protective Film Stress theRMAL Shock STARTUP EQUIVALENT Operating Hours
下载PDF
Mathematical model for in-line determination of heat transfer coefficients in a steam generation process
18
作者 Sotsil Silva-Sotelo Rosenberg. J. Romero Dommguez Roberto Best 《通讯和计算机(中英文版)》 2009年第11期69-76,共8页
关键词 蒸汽发生器 传热系数 在线测定 生成过程 数学模型 板式换热器 安捷伦科技 最佳操作条件
下载PDF
Combined Heat and Power Design Considerations for the APR1400
19
作者 Michal Wierzchowski Robert M. Field 《Journal of Energy and Power Engineering》 2017年第3期195-203,共9页
关键词 核电站设计 热电联产 能源价格 化石燃料 Shin 蒸汽流量 重水生产 区域供热
下载PDF
Forced Convection Boiling Heat Transfer and Dryout Characteristics in Helical Coiled Tubes with Various Axial Angles 被引量:4
20
作者 郭烈锦 张西民 +1 位作者 冯自平 陈学俊 《应用基础与工程科学学报》 EI CSCD 1998年第4期61-69,共9页
对水和水蒸汽汽液两相流体在螺旋轴呈各种倾角放置的螺旋管内强制对流沸腾传热与烧毁特性进行了系统地试验研究,试验中系统及结构参数范围如下:压力:P=0.4~3.0MPa质量流速:G=100~2400kg/m2·s进口... 对水和水蒸汽汽液两相流体在螺旋轴呈各种倾角放置的螺旋管内强制对流沸腾传热与烧毁特性进行了系统地试验研究,试验中系统及结构参数范围如下:压力:P=0.4~3.0MPa质量流速:G=100~2400kg/m2·s进口水温:T=30~80℃出口干度:x=-0.05~1.2管内壁面热负荷:q=0~540kE/m2试验段结构参数:总长L=6448mm,管内径d=11mm,螺旋直径D=256mm,螺旋升角β=4.27°螺旋管轴向放置倾角:水平位置(0°)、向上倾斜45°(+45°)、垂直向上(+90°)、向下倾斜45°(-45°).共进行了1050个工况的试验.试验结果表明,螺旋管内汽液两相流强制对流沸腾传热可以划分为核态沸腾区、两相流强制对流区、烧毁及烧毁后传热区等3种区域.通过数据处理和分析总结,给出了3区域间转变的边界方程,和3个区域内两相流传热系数的计算公式.根据试验观察和数据结果,对烧毁现象及烧毁点或区域发生的条件及机理进行了深入的分析研究,发现一系列有关现象的规律和特点,指出了其主要影响因素,并给出了烧毁点临界质量干度的预报公式. 展开更多
关键词 螺旋管 水/水蒸汽汽液两相流 强制对流沸腾传热 烧毁
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部