CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs...CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.展开更多
云南红河特大桥建水侧采用浅埋重力式锚碇基础,锚碇后趾区和前趾区分别坐落在中风化板岩和强风化板岩上。该工程在前趾区域采用非等长刚性桩复合地基方案解决土岩组合地基、偏心受荷等因素引起的不均匀沉降和水平变位问题。为保证方案...云南红河特大桥建水侧采用浅埋重力式锚碇基础,锚碇后趾区和前趾区分别坐落在中风化板岩和强风化板岩上。该工程在前趾区域采用非等长刚性桩复合地基方案解决土岩组合地基、偏心受荷等因素引起的不均匀沉降和水平变位问题。为保证方案可靠性,项目在中风化和强风化板岩区域分别进行了3组直剪试验、3组载荷试验,针对刚性桩开展了2组单桩载荷试验。试验得到了中风化、强风化板岩的地基承载力分别不小于1200 kPa、800 k Pa,与基础的摩阻系数分别为0.60、0.55;单桩承载力特征值不小于3500 kN。展开更多
基金Project(08JJ3111) supported by the Natural Science Foundation of Hunan ProvinceProject(08B025) supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2006AA11Z104) supported by the National High-Tech Research and Development Program of China
文摘CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.
文摘云南红河特大桥建水侧采用浅埋重力式锚碇基础,锚碇后趾区和前趾区分别坐落在中风化板岩和强风化板岩上。该工程在前趾区域采用非等长刚性桩复合地基方案解决土岩组合地基、偏心受荷等因素引起的不均匀沉降和水平变位问题。为保证方案可靠性,项目在中风化和强风化板岩区域分别进行了3组直剪试验、3组载荷试验,针对刚性桩开展了2组单桩载荷试验。试验得到了中风化、强风化板岩的地基承载力分别不小于1200 kPa、800 k Pa,与基础的摩阻系数分别为0.60、0.55;单桩承载力特征值不小于3500 kN。