期刊文献+
共找到443篇文章
< 1 2 23 >
每页显示 20 50 100
White Organic Light Emitting Devices Based on Multiple Emissive Nanolayers 被引量:4
1
作者 M.V.Madhava Rao Yan Kuin Su +1 位作者 T.S.Huang Yi-Chun Chen 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期242-246,共5页
In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)... In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V. 展开更多
关键词 Multilayer structure organic light-emitting device White emission
下载PDF
Improving efficiency of organic light-emitting devices by optimizing the LiF interlayer in the hole transport layer 被引量:2
2
作者 焦志强 吴晓明 +4 位作者 华玉林 董木森 苏跃举 申利莹 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期426-429,共4页
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (A... The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency. 展开更多
关键词 organic light-emitting devices LIF INTERLAYER EFFICIENCY
下载PDF
Tandem organic light-emitting diode with a molybdenum tri-oxide thin film interconnector layer 被引量:1
3
作者 路飞平 王倩 周翔 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期442-446,共5页
A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naph... A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naphthalen-1-yl)N,N-bis(phenyl)-benzidine(NPB) /tris(8-hydroxyquinoline) aluminum(Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices.At 20 mA/cm2,the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A,which is about twice that of the corresponding conventional single-unit device(1.8cd/A).The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200cd/m2.The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs.Such an interconnector layer can be easily fabricated by simple thermal evaporation,greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers.A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer. 展开更多
关键词 tandem organic light-emitting device MoO3 thin film interconnector layer
下载PDF
Dependence of Performance of Organic Light-emitting Devices on Sheet Resistance of Indium-tin-oxide Anodes 被引量:2
4
作者 ZHOU Liang ZHANG Hong-jie YU Jiang-bo MENG Qing-guo PENG Chun-yun LIU Feng-yi DENG Rui-ping PENG Ze-ping LI Zhe-feng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第4期427-431,共5页
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c... The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance. 展开更多
关键词 organic light-emitting device(OLED) Indium-tin-oxide(ITO) Sheet resistance Balance of holes and electrons
下载PDF
Numerical model of multilayer organic light-emitting devices 被引量:1
5
作者 胡玥 饶海波 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1627-1630,共4页
A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trappi... A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trapping, heterojunction interface and recombination process. The device structure in the simulation is ITO/CuPc (20 nm)/NPD (40 nm)/Alq3 (60 nm)/LiF/Al. There are two heterojunctions which should be dealt with in the simulation. The I-V characteristics, carrier distribution and recombination rate of a device are calculated. The simulation results and measured data are in good agreement. 展开更多
关键词 organic light-emitting devices MULTILAYER SIMULATION
下载PDF
Negative capacitance in doped bi-layer organic light-emitting devices 被引量:1
6
作者 李诺 高歆栋 +3 位作者 谢作提 孙正义 丁训民 侯晓远 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期465-470,共6页
This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance... This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance and luminance of the device are measured. Negative capacitance (NC) appeared at low frequencies when the doped devices are biased with high voltages. The measured phase difference between AC voltage applied across the device and AC current flowing through the device show that the device is inductive when NC appears. 展开更多
关键词 negative capacitance doping in different regions organic light-emitting device
下载PDF
Enhancement of Frster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices 被引量:1
7
作者 王子君 赵娟 +2 位作者 周畅 祁一歌 于军胜 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期404-410,共7页
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm... Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency. 展开更多
关键词 white organic light-emitting devices non-doped emitting layers thermally activated delayed fluo-rescence color stability
下载PDF
STUDY OF DEGRADATION MECHANISM AND PACKAGING OF ORGANIC LIGHT EMITTING DEVICES
8
作者 Gu Xu Materials Science and Engineering McMaster University Hamilton, Ontario, L8S 4L7 Canada 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第5期527-531,共5页
Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to the... Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to theircommercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fastdegradation of OLEDs. In particular, we focus on the origin of the dark spots by 'rebuilding' cathodes, which confirms thatthe growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from thesearch for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation andmoisture resistance, in addition to electrical insulation. 展开更多
关键词 organic light emitting devices Degradation mechanism Dark spots Cathode rebuilding Polymer composites Heat dissipation and moisture resistance
下载PDF
Improved device reliability in organic light emitting devices by controlling the etching of indium zinc oxide anode
9
作者 廖英杰 娄艳辉 +1 位作者 王照奎 廖良生 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期634-638,共5页
A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electr... A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a sup- pression of the leak current in the current-voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia. 展开更多
关键词 indium zinc oxide (IZO) organic light emitting device (OLED) leak current LIFETIME
下载PDF
Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines 被引量:1
10
作者 Jun-Sheng Yu Lu Li Ya-Dong Jiang Xing-Qiao Ji Tao Wang 《Journal of Electronic Science and Technology of China》 2007年第2期183-186,共4页
High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of... High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers. 展开更多
关键词 Aluminum quinolines blue emission heterostructure organic light-emitting devices (OLEDs).
下载PDF
High-contrast top-emitting organic light-emitting devices
11
作者 陈淑芬 陈春燕 +4 位作者 杨洋 谢军 黄维 石弘颖 程凡 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期527-532,共6页
In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhanceme... In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects. 展开更多
关键词 top-emitting organic light-emitting device contrast-enhancement stack ANTI-REFLECTION
下载PDF
Improvement of electron injection of organic light-emitting devices by inserting a thin aluminum layer into cesium carbonate injection layer
12
作者 辛利文 吴晓明 +4 位作者 华玉林 肖志慧 王丽 张欣 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期390-393,共4页
We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first... We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer. 展开更多
关键词 Al–O–Cs complex Cs2CO3 electron injection layer thin Al layer organic light-emitting devices(OLEDs)
下载PDF
Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene
13
作者 高建 于倩倩 +6 位作者 张娟 刘洋 贾若飞 韩俊 吴晓明 华玉林 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期530-535,共6页
We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be ef... We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device. 展开更多
关键词 organic light-emitting device(OLED) annealing pentacene film hole injection
下载PDF
Efficiency of a blue organic light-emitting diode enhanced by inserting charge control layers into the emission region 被引量:2
14
作者 白娟娟 吴晓明 +7 位作者 华玉林 穆雪 毕文涛 苏跃举 焦志强 申利莹 印寿根 郑加金 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期504-507,共4页
We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs... We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species. 展开更多
关键词 organic light-emitting devices charge control layer current efficiency
下载PDF
Low driving voltage in an organic light-emitting diode using MoO_3/NPB multiple quantum well structure in a hole transport layer 被引量:1
15
作者 穆雪 吴晓明 +7 位作者 华玉林 焦志强 申利莹 苏跃举 白娟娟 毕文涛 印寿根 郑加金 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期511-514,共4页
The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) struc... The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3. 展开更多
关键词 organic light-emitting devices low driving voltage multiple quantum wells charge transfer complex
下载PDF
Organic Light Emitting Diodes with p-Si Anodes and Semitransparent Ce/Au Cathodes
16
作者 孙志国 姜广智 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期208-211,共4页
The Ce (x nm)/Au (15 nm) stacked layers were used as semitransparent cathodes in the top-emission organic light emitting devices (TOLEDs) fabricated on a p-type silicon anodes and substrate,where x varies from 4... The Ce (x nm)/Au (15 nm) stacked layers were used as semitransparent cathodes in the top-emission organic light emitting devices (TOLEDs) fabricated on a p-type silicon anodes and substrate,where x varies from 4 to 16.The consequence of the Ce layer thickness on transmittance and the device performance were studied when the organic layers NPB (60 nm)/ALQ (60 nm) were kept unchanged,where NPB was N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine,and AlQ is tris-(8-hydroxyquinoline) aluminum.The cathode of Ce (11 nm)/Au (15 nm) has a transparency of 46%,and the TOLED with it achieves the highest luminescence efficiencies:a current efficiency of 0.91 cd/A at 13.7 V and a peak power efficiency of 0.28 lm/W at 9 V.The turn-on voltage is 3.0 V.The Ce/Au cathode is both chemically and electrically stable. 展开更多
关键词 organic light emitting device transparent cathode CE
下载PDF
Examining micro-cavity parameters of top emission organic light-emitting diode with low-order resonant modes
17
作者 曹进 王立 张建华 《Journal of Shanghai University(English Edition)》 CAS 2011年第4期235-238,共4页
Emission characteristics of top emitting organic light-emitting devices (TOLEDs) with Ag as reflective anode, Al/Ag as semitransparent cathode and 90 160 nm [N-(1-naphthyl)-N-phenyl-amino] biphenyl/tris-(8-hydrox... Emission characteristics of top emitting organic light-emitting devices (TOLEDs) with Ag as reflective anode, Al/Ag as semitransparent cathode and 90 160 nm [N-(1-naphthyl)-N-phenyl-amino] biphenyl/tris-(8-hydroxy quinoline) aluminum (NPB/Alq3) sandwiched in the electrodes are examined. The electroluminescence (EL) spectra of the TOLEDs are simulated based on the Fabry-Perot cavity theory. And the resonant modes in cavity structure of TOLEDs is discussed and clarified which can accurately describe the work principle of the devices. A fairly good match between calculated values and experimental data is achieved at different emission colors from bluish green to orange. 展开更多
关键词 top-emitting organic light-emitting devices (TOLEDs) MICRO-CAVITY resonant modes
下载PDF
The Effect of Recombination Zone Positon on the Color Temperature Performance in the Color-Tunable White Organic Light-Emitting Diode
18
作者 Zhixiu Ma Ce Bian Zeyuan Gao 《Optics and Photonics Journal》 CAS 2022年第4期78-87,共10页
Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important pa... Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important parameter to measure the performance of CT-OLEDs. In this paper, the effect of changing the utilization of phosphorescent materials and the position of the recombination zone (RZ) in the device are investigated by changing the thickness of the emissive layer (EML) and the doping ratio of the host and guest materials. The results show that reducing the red phosphorescent material and improving the blue phosphorescent material can affect the change direction of CCT, but it is not enough to expand the span of CCT (ΔCCT). It is more conducive to improving ΔCCT by more reasonable regulation of the position of the main RZ in EML and the energy transfer from the blue sub-EML to the red sub-EML. Device D obtains the best electro-optic and spectral characteristics, in which the maximum ΔCCT is 5746 K (2661 - 8407 K) as the voltage changes from 3.75 V to 9.75 V, the maximum current efficiency and luminance reach 18.34 cd·A<sup>-1</sup> and 12,100 cd·m<sup>-2</sup>, respectively. 展开更多
关键词 Optical devices organic light-emitting Diode Color-Tunable Recombination Zone Color Temperature
下载PDF
Reduction of the Optical Loss in the Multi-Cathode Structure Organic Light Emitting Device Using a Long Range Surface Plasmon
19
作者 Akiyoshi Mikami 《Optics and Photonics Journal》 2016年第8期226-232,共8页
Light extraction efficiency of organic light-emitting devices has improved by using a nano-sized multi-cathode structure consisting of semi-transparent metal and an optical compensation layer. From the detail optical ... Light extraction efficiency of organic light-emitting devices has improved by using a nano-sized multi-cathode structure consisting of semi-transparent metal and an optical compensation layer. From the detail optical calculation based on the multi-scale analysis including near-field optics, it was found that surface plasmon loss in the metal cathode is suppressed to less than 10% due to long range and short range surface plasmon coupling between both sides of metal cathode. Not less than 90% of optical power in the dipole emission can be successfully utilized as propagation light. Light extraction efficiency in a phosphorescent device has improved about twice by using the multi-cathode structure. 展开更多
关键词 light-emitting Device organic Material Surface Plasmon Optical Simulation
下载PDF
Numerical Analysis on Current Transport Characteristics in Single Layer Organic Electroluminescent Devices 被引量:3
20
作者 PENG Ying quan 1, GAO Zhao yang 1, HE Xi yuan 1, ZHANG Xu 2 (1.School of Phys. Sci. and Tech., Lanzhou University, Lanzhou 730000, CHN 2. Dept. of Phys., Gansu Education University, Lanzhou 730030, CHN) 《Semiconductor Photonics and Technology》 CAS 2002年第4期215-220,227,共7页
A new model to describe I-V characteristics of organic light emitting devices (OLEDs) is developed based on experimental results. The dependence of I-V characteristics on energy barrier, trap density and carrier mobil... A new model to describe I-V characteristics of organic light emitting devices (OLEDs) is developed based on experimental results. The dependence of I-V characteristics on energy barrier, trap density and carrier mobility is analyzed. The result shows that this model combines the Fowler Nordheim tunnel theory and the trap charge limited current theory with exponential trap distribution (TCL), and it describes the current transport characteristics of OLEDs more comprehensively. The I-V characteristics follow Fowler Nordheim theory when the energy barrier is high, the trap density is small and the carrier mobility is large.In other cases they follow the TCL theory. 展开更多
关键词 organic light emitting device CHARACTERISTICS NUMERICAL model
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部