This paper first introduces a way to improve interactivity with high polygon count virtual objects through the "mixed" use of image-based representation within one object. That is, both 3D polygonal and imag...This paper first introduces a way to improve interactivity with high polygon count virtual objects through the "mixed" use of image-based representation within one object. That is, both 3D polygonal and image-based representations are maintained for an object, and switched for rendering depending on the functional requirement of the object. Furthermore, in order to reduce the popping effect and provide smooth and gradual transition during the object representation switch, the object is subdivided with the subdivided parts possibly represented differently, i.e., using 3D models or images. As for the image-based representation, the relief texture (RT) method is used. In particular, through the use of the mixed representation, a new way called TangibleScreen is pro-posed to provide object tangibility by associating the image-based representation with a physical prop (projecting the RTs) in a selective and flexible way. Overall, the proposed method provides a way to maintain an interactive frame rate with selective perceptual details in a large-scale virtual environment, while allowing the user to interact with virtual objects in a tangible way.展开更多
This paper highlights the use of situated artificial institution(SAI) within a hybrid, interactive,normative multi-agent system to regulate human collaboration in crisis management. Norms regulate the actions of human...This paper highlights the use of situated artificial institution(SAI) within a hybrid, interactive,normative multi-agent system to regulate human collaboration in crisis management. Norms regulate the actions of human actors based on the dynamics of the environment in which they are situated. This dynamics results from both environment evolution and actors' actions. Our objective is to situate norms in the environment in order to provide a context-aware crisis regulation. However, this coupling must be a loose one to keep both levels independent and easyto-change in order to face the complex and changing crisis situations. To that aim, we introduce a constitutive level between environmental and normative states providing a loose coupling of normative regulation with environment evolution. Norms are thus no more referring to environmental facts but to status functions, i.e., the institutional interpretation of environmental facts through constitutive rules. We present how this declarative and distinct SAI modelling succeeds in managing the crisis with a context-aware crisis regulation.展开更多
基金Project (No. R01-2006-000-11142-0) supported by the "Teukjung Gicho" Program of the Korea Science Foundation
文摘This paper first introduces a way to improve interactivity with high polygon count virtual objects through the "mixed" use of image-based representation within one object. That is, both 3D polygonal and image-based representations are maintained for an object, and switched for rendering depending on the functional requirement of the object. Furthermore, in order to reduce the popping effect and provide smooth and gradual transition during the object representation switch, the object is subdivided with the subdivided parts possibly represented differently, i.e., using 3D models or images. As for the image-based representation, the relief texture (RT) method is used. In particular, through the use of the mixed representation, a new way called TangibleScreen is pro-posed to provide object tangibility by associating the image-based representation with a physical prop (projecting the RTs) in a selective and flexible way. Overall, the proposed method provides a way to maintain an interactive frame rate with selective perceptual details in a large-scale virtual environment, while allowing the user to interact with virtual objects in a tangible way.
基金supported by CAPES-PDSE(No.4926145)CNPq(Nos.448462/2014-1 and 306301/2012-1)ARC 6 Region Rh?ne-Alpes(No.ARC-13-009716-01)
文摘This paper highlights the use of situated artificial institution(SAI) within a hybrid, interactive,normative multi-agent system to regulate human collaboration in crisis management. Norms regulate the actions of human actors based on the dynamics of the environment in which they are situated. This dynamics results from both environment evolution and actors' actions. Our objective is to situate norms in the environment in order to provide a context-aware crisis regulation. However, this coupling must be a loose one to keep both levels independent and easyto-change in order to face the complex and changing crisis situations. To that aim, we introduce a constitutive level between environmental and normative states providing a loose coupling of normative regulation with environment evolution. Norms are thus no more referring to environmental facts but to status functions, i.e., the institutional interpretation of environmental facts through constitutive rules. We present how this declarative and distinct SAI modelling succeeds in managing the crisis with a context-aware crisis regulation.