A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the...In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.展开更多
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri...Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.展开更多
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to...Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
As many think that respect for the environment, is not only a question intended for industrialists but has all the sectors of life, in particular sanitary also. In this regard, our article brings alternative managemen...As many think that respect for the environment, is not only a question intended for industrialists but has all the sectors of life, in particular sanitary also. In this regard, our article brings alternative management of human waste (excrement) to solve the problems that plague our dear beautiful capital, namely: 1) Lack of latrines that meet the standards;2) Emptying of septic tanks directly into the gutters and;3) Water pollution by sewage csompanies. In order to carry out the cartographic analysis of the study area, we used Shapefile data from the OpenStreetMap, Diva-Gis. These different data allowed us, analyzed, to categorize with the software ArArcGIS 0.8.1 to produce different zones according to the cases incurred in the city of Kinshasa. To do this, the analytical method uses the Buswell equation to determine the amount of gas contained in human excrement. Focusing on the analysis of the excrements produced by the population of age superior to 10 years, for 2023, we obtained: 138355.7283 m<sup>3</sup>/day of CH4 (885476.66 kWh/day or 885.476 MWh/day), which, energy can light: 138,355 lamps of 60 to 100 W for six hours or nearly 70,000 lamps of 60 to 100 W for 12 hours. Considering the last one which offers the lowest access rate, i.e. 3% of the district population to these latrines, we have: a) In Tshangu, we produce: 1618.762 <sup>3>/day (10360.07 kWh/day or 10.36 MWh/day) which can light nearly 1600 lamps from 60 to 100 W for six hours or nearly 800 lamps from 60 to 100 W for twelve hours. b) Mont-Amba, we produce 1402.927 <sup>3>/day (8978.73 kWh/day or 8.97 MWh/day) which can light nearly 1400 lamps from 60 to 100 W for six hours or nearly 700 lamps from 60 to 100 W for twelve hours;c) In Lukunga, we produce: 946.35 <sup>3>/day (6056.66 kWh/day or 6.056 MWh/day) which can light nearly 900 lamps from 60 to 100 W for six hours or nearly 450 lamps from 60 to 100 W for twelve hours. d) Funa, we produce: 182.629 <sup>3>/day (1168.83 kWh/day or 1.17 MWh/day) which can light almost 180 lamps from 60 to 100 W for six hours or almost 90 lamps from 60 to 100 W for twelve hours.展开更多
Liquid storage,particularly oil and petrochemical products which are considered hazardous liquid,are an important part of the oil industry.Thin-walled vertical cylindrical steel storage tanks are widely used in recent...Liquid storage,particularly oil and petrochemical products which are considered hazardous liquid,are an important part of the oil industry.Thin-walled vertical cylindrical steel storage tanks are widely used in recent years.Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences.For instance,huge economic losses,environmental damages,and casualities,many studies have been done about these structures.past studies showed that liquid storage tanks,equipped with a floating roof,are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one of the most destructive natural hazards.The reason is that such tanks are made of two separated parts(shell and roof)which each may have its own responses;sometimes causing resonance phenomenon and so that,roof movements,rooffluid interaction,roof-shell interaction,and also the way they are attached should still be investigated.Experimental tests of floating roof’s vertical fluctuation was performed in a full-scale reservoir tank and assessing of the results demonstrated that presence of a seal between floating roof and shell plate can significantly increase damping ratio in liquid sloshing and also suppress the roof`s vertical displacements.In other words,seal can control a floating roof and make it stop moving vertically over few cycles.展开更多
Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To...Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.展开更多
Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and f...Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.展开更多
Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion fie...Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion field theory. However,the problem of the poor applicability of low-frequency measurements in these tanks has not yet been solved. Therefore,we propose a low-frequency acoustic measurement method based on sound-field correction(SFC) in an enclosed space that effectively solves the problem of measuring the sound power from complex sound sources below the Schroeder cutoff frequency in a non-anechoic tank. Using normal mode theory, the transfer relationship between the mean-square sound pressure in an underwater enclosed space and the free-field sound power of the sound source is established, and this is regarded as a correction term for the sound field between this enclosed space and the free field. This correction term can be obtained based on previous measurements of a known sound source. This term can then be used to correct the mean-square sound pressure excited by any sound source to be tested in this enclosed space and equivalently obtain its free-field sound power. Experiments were carried out in a non-anechoic water tank(9.0 m × 3.1 m × 1.7 m) to confirm the validity of the SFC method. Through measurements with a spherical sound source(whose free-field radiation characteristics are known),the correction term of the sound field between this water tank and the free field was obtained. On this basis, the sound power radiated from a cylindrical shell model under the action of mechanical excitation was measured. The measurement results were found to have a maximum deviation of 2.9 d B from the free-field results. These results show that the SFC method has good applicability in the frequency band above the first-order resonant frequency in a non-anechoic tank. This greatly expands the potential low-frequency applications of non-anechoic tanks.展开更多
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio...Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.展开更多
Ocean thermal energy conversion(OTEC)is a process of generating electricity by exploiting the temperature difference between warm surface seawater and cold deep seawater.Due to the high static and dynamic pressures th...Ocean thermal energy conversion(OTEC)is a process of generating electricity by exploiting the temperature difference between warm surface seawater and cold deep seawater.Due to the high static and dynamic pressures that are caused by seawater circulation,the stiffened panel that constitutes a seawater tank may undergo a reduction in ultimate strength.The current paper investigates the design of stiffening systems for OTEC seawater tanks by examining the effects of stiffening parameters such as stiffener sizes and span-over-bay ratio for the applied combined loadings of lateral and transverse pressure by fluid motion and axial compression due to global bending moment.The ultimate strength calculation was conducted by using the non-linear finite element method via the commercial software known as ABAQUS.The stress and deformation distribution due to pressure loads was computed in the first step and then brought to the second step,in which the axial compression was applied.The effects of pressure on the ultimate strength of the stiffener were investigated for representative stiffened panels,and the significance of the stiffener parameters was assessed by using the sensitivity analysis method.As a result,the ultimate strength was reduced by approximately 1.5%for the span-over-bay ratio of 3 and by 7%for the span-over-bay ratio of 6.展开更多
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship...Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.展开更多
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金supported by National Natural Science Foundation of China Innovation Group (Grant No.12221002)Beijing Natural Science Foundation (Grant No.L212018)。
文摘In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
文摘Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.
基金the National Natural Science Foundation of China(No.52271316)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030262).
文摘Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
文摘As many think that respect for the environment, is not only a question intended for industrialists but has all the sectors of life, in particular sanitary also. In this regard, our article brings alternative management of human waste (excrement) to solve the problems that plague our dear beautiful capital, namely: 1) Lack of latrines that meet the standards;2) Emptying of septic tanks directly into the gutters and;3) Water pollution by sewage csompanies. In order to carry out the cartographic analysis of the study area, we used Shapefile data from the OpenStreetMap, Diva-Gis. These different data allowed us, analyzed, to categorize with the software ArArcGIS 0.8.1 to produce different zones according to the cases incurred in the city of Kinshasa. To do this, the analytical method uses the Buswell equation to determine the amount of gas contained in human excrement. Focusing on the analysis of the excrements produced by the population of age superior to 10 years, for 2023, we obtained: 138355.7283 m<sup>3</sup>/day of CH4 (885476.66 kWh/day or 885.476 MWh/day), which, energy can light: 138,355 lamps of 60 to 100 W for six hours or nearly 70,000 lamps of 60 to 100 W for 12 hours. Considering the last one which offers the lowest access rate, i.e. 3% of the district population to these latrines, we have: a) In Tshangu, we produce: 1618.762 <sup>3>/day (10360.07 kWh/day or 10.36 MWh/day) which can light nearly 1600 lamps from 60 to 100 W for six hours or nearly 800 lamps from 60 to 100 W for twelve hours. b) Mont-Amba, we produce 1402.927 <sup>3>/day (8978.73 kWh/day or 8.97 MWh/day) which can light nearly 1400 lamps from 60 to 100 W for six hours or nearly 700 lamps from 60 to 100 W for twelve hours;c) In Lukunga, we produce: 946.35 <sup>3>/day (6056.66 kWh/day or 6.056 MWh/day) which can light nearly 900 lamps from 60 to 100 W for six hours or nearly 450 lamps from 60 to 100 W for twelve hours. d) Funa, we produce: 182.629 <sup>3>/day (1168.83 kWh/day or 1.17 MWh/day) which can light almost 180 lamps from 60 to 100 W for six hours or almost 90 lamps from 60 to 100 W for twelve hours.
文摘Liquid storage,particularly oil and petrochemical products which are considered hazardous liquid,are an important part of the oil industry.Thin-walled vertical cylindrical steel storage tanks are widely used in recent years.Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences.For instance,huge economic losses,environmental damages,and casualities,many studies have been done about these structures.past studies showed that liquid storage tanks,equipped with a floating roof,are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one of the most destructive natural hazards.The reason is that such tanks are made of two separated parts(shell and roof)which each may have its own responses;sometimes causing resonance phenomenon and so that,roof movements,rooffluid interaction,roof-shell interaction,and also the way they are attached should still be investigated.Experimental tests of floating roof’s vertical fluctuation was performed in a full-scale reservoir tank and assessing of the results demonstrated that presence of a seal between floating roof and shell plate can significantly increase damping ratio in liquid sloshing and also suppress the roof`s vertical displacements.In other words,seal can control a floating roof and make it stop moving vertically over few cycles.
基金supported in part by the National Natural Science Foundation of China under Grant 51905271,Grant No.52275062and Grant No.52075262。
文摘Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.
文摘Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.
基金the National Natural Science Foundation of China (Grant No. 11874131)Open Fund Project of Key Laboratory of Underwater Acoustic Countermeasures Technology (Grant No. 2021-JCJQ-LB033-05)。
文摘Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion field theory. However,the problem of the poor applicability of low-frequency measurements in these tanks has not yet been solved. Therefore,we propose a low-frequency acoustic measurement method based on sound-field correction(SFC) in an enclosed space that effectively solves the problem of measuring the sound power from complex sound sources below the Schroeder cutoff frequency in a non-anechoic tank. Using normal mode theory, the transfer relationship between the mean-square sound pressure in an underwater enclosed space and the free-field sound power of the sound source is established, and this is regarded as a correction term for the sound field between this enclosed space and the free field. This correction term can be obtained based on previous measurements of a known sound source. This term can then be used to correct the mean-square sound pressure excited by any sound source to be tested in this enclosed space and equivalently obtain its free-field sound power. Experiments were carried out in a non-anechoic water tank(9.0 m × 3.1 m × 1.7 m) to confirm the validity of the SFC method. Through measurements with a spherical sound source(whose free-field radiation characteristics are known),the correction term of the sound field between this water tank and the free field was obtained. On this basis, the sound power radiated from a cylindrical shell model under the action of mechanical excitation was measured. The measurement results were found to have a maximum deviation of 2.9 d B from the free-field results. These results show that the SFC method has good applicability in the frequency band above the first-order resonant frequency in a non-anechoic tank. This greatly expands the potential low-frequency applications of non-anechoic tanks.
基金National Natural Science Foundation of China(U2004176,22008055)Technology Research Project of Henan Province(232102240034)are gratefully acknowledged.
文摘Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.
基金part of the OTEC research activity"Preliminary Design of a 5 MW OTEC plant:Study case in the North Bali"research grand DIPA-124.01.1.690505/2023 conducted by the Marine Renewable Energy Conversion Technology research group,Research Center for Hydrodynamics Technology,National Research and Innovation Agency(BRIN)。
文摘Ocean thermal energy conversion(OTEC)is a process of generating electricity by exploiting the temperature difference between warm surface seawater and cold deep seawater.Due to the high static and dynamic pressures that are caused by seawater circulation,the stiffened panel that constitutes a seawater tank may undergo a reduction in ultimate strength.The current paper investigates the design of stiffening systems for OTEC seawater tanks by examining the effects of stiffening parameters such as stiffener sizes and span-over-bay ratio for the applied combined loadings of lateral and transverse pressure by fluid motion and axial compression due to global bending moment.The ultimate strength calculation was conducted by using the non-linear finite element method via the commercial software known as ABAQUS.The stress and deformation distribution due to pressure loads was computed in the first step and then brought to the second step,in which the axial compression was applied.The effects of pressure on the ultimate strength of the stiffener were investigated for representative stiffened panels,and the significance of the stiffener parameters was assessed by using the sensitivity analysis method.As a result,the ultimate strength was reduced by approximately 1.5%for the span-over-bay ratio of 3 and by 7%for the span-over-bay ratio of 6.
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.
基金supported by the National Natural Science Foundation of China(Grant No.51979029)。
文摘Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.