A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-M...A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-Moscowitz spectrum. Numerical tests are performed to validate the model results. Then, the onset of wave breaking is discussed with geometric, kinematic, and dynamic breaking criteria. The strength of wave breaking, which is always characterized by the fractional energy loss and breaking strength coefficient, is studied for different spectra. The results show how the energy growth rate is better than the initial wave steepness on estimating the fractional energy losses as well as breaking strength coefficient.展开更多
The demand for natural gas in the world is increasing day by day. The efficient and flexible LNG becomes the preferred method for natural gas storage and transportation and has gradually entered people’s daily life. ...The demand for natural gas in the world is increasing day by day. The efficient and flexible LNG becomes the preferred method for natural gas storage and transportation and has gradually entered people’s daily life. The enclosure system is the key core of LNG transport and storage vessels for storage of LNG at -163°C for isolation and thermal insulation. A new type of flat half-film prismatic LNG enclosure system has been developed for the shortcomings of the existing LNG cargo enclosure system. Through the breakthrough and mastery of key core technologies such as the overall layout and integration of the system, anti-leakage technology, liquid tank fixing technology, and large-scale friction stir welding (P-FSW) flat-line pipeline development technology, we’ll strive to fill the gap in the intelligent construction technology of large aluminum alloy tanks in China. The tank was subjected to water vapor test and numerical simulation. The results show that the structural strength of the FSP-LNG tank meets the strength check standard of IGC Code.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41106019 and 41176016)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201105018)the Scientific Research Fund of the Second Institute of Oceanography,SOA(Grant No.JT1205)
文摘A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-Moscowitz spectrum. Numerical tests are performed to validate the model results. Then, the onset of wave breaking is discussed with geometric, kinematic, and dynamic breaking criteria. The strength of wave breaking, which is always characterized by the fractional energy loss and breaking strength coefficient, is studied for different spectra. The results show how the energy growth rate is better than the initial wave steepness on estimating the fractional energy losses as well as breaking strength coefficient.
文摘The demand for natural gas in the world is increasing day by day. The efficient and flexible LNG becomes the preferred method for natural gas storage and transportation and has gradually entered people’s daily life. The enclosure system is the key core of LNG transport and storage vessels for storage of LNG at -163°C for isolation and thermal insulation. A new type of flat half-film prismatic LNG enclosure system has been developed for the shortcomings of the existing LNG cargo enclosure system. Through the breakthrough and mastery of key core technologies such as the overall layout and integration of the system, anti-leakage technology, liquid tank fixing technology, and large-scale friction stir welding (P-FSW) flat-line pipeline development technology, we’ll strive to fill the gap in the intelligent construction technology of large aluminum alloy tanks in China. The tank was subjected to water vapor test and numerical simulation. The results show that the structural strength of the FSP-LNG tank meets the strength check standard of IGC Code.