Bioleaching of Cr(Ⅲ) from tannery sludge using the mixture of ingenuous iron- and sulfur-oxidizing bacteria was investigated in batch flasks. Experiments involved the adaptation of indigenous iron-and sulfur-oxidiz...Bioleaching of Cr(Ⅲ) from tannery sludge using the mixture of ingenuous iron- and sulfur-oxidizing bacteria was investigated in batch flasks. Experiments involved the adaptation of indigenous iron-and sulfur-oxidizing bacteria, the pre-acidification the sludge to pH 6.0 and the addition of energy substrates. Results showed the inoculation of mixture of ingenuous iron- and sulfur-oxidizing bacteria and co-addition of Fe^2 and elemental sulfur accelerated acid production and increase of oxidation-reduction potential originating from the bio-oxidation of Fe2^+ and elemental sulfur. Dissolved Cr concentration increased concomitant with pH decreased in the sludge and reached its maximum removal of 95.6%. The amelioration of the odor of bioleached sludge could be noted. However, 20.4%o of N, 24.5% of P and 14.3% of organic matter were lost in the bioleaching process. The residual Cr content in the leached tannery sludge was acceptable for use in agriculture. This study had shown the feasibility of applying the bioleaching process, developed for sewage sludge, to tannery sludge with high Cr.展开更多
基金The National Natural Science Foundation of China (No. 20377023) and the Program for New Century Excellent Talents in University(No. NCET-04-0505)
文摘Bioleaching of Cr(Ⅲ) from tannery sludge using the mixture of ingenuous iron- and sulfur-oxidizing bacteria was investigated in batch flasks. Experiments involved the adaptation of indigenous iron-and sulfur-oxidizing bacteria, the pre-acidification the sludge to pH 6.0 and the addition of energy substrates. Results showed the inoculation of mixture of ingenuous iron- and sulfur-oxidizing bacteria and co-addition of Fe^2 and elemental sulfur accelerated acid production and increase of oxidation-reduction potential originating from the bio-oxidation of Fe2^+ and elemental sulfur. Dissolved Cr concentration increased concomitant with pH decreased in the sludge and reached its maximum removal of 95.6%. The amelioration of the odor of bioleached sludge could be noted. However, 20.4%o of N, 24.5% of P and 14.3% of organic matter were lost in the bioleaching process. The residual Cr content in the leached tannery sludge was acceptable for use in agriculture. This study had shown the feasibility of applying the bioleaching process, developed for sewage sludge, to tannery sludge with high Cr.