Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus...Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability.展开更多
Background In broiler chickens,necrotic enteritis(NE)infection can reduce production performance.Tannic acid has shown great potential as a treatment of NE in broilers.However,the appropriate dosage of tannic acid in ...Background In broiler chickens,necrotic enteritis(NE)infection can reduce production performance.Tannic acid has shown great potential as a treatment of NE in broilers.However,the appropriate dosage of tannic acid in NE of broilers and the improvement effect on intestinal health are not very clear.In this study,we aimed to investigate the effects of different doses of tannic acid on the production performance,immunity,and intestinal health of broilers by constructing an NE model with C.perfringens infection and determining the appropriate dosage of tannic acid with regard to NE.Results Challenged birds showed significant reduction in body weight,villus height,and the ratio of villus height to crypt depth(P<0.05)and increase in the feed consumption gain ratio,intestinal lesion score,and crypt depth(P<0.05).The infection significantly reduced the relative Bacteroidota and Ligilactobacillus abundance(P<0.05)and increased the ratio of Firmicutes/Bacteroidota and cecal content of C.perfringens(P<0.05).Challenged birds fed diets supplemented with tannic acid showed significantly increased mRNA expression of nutrient transport carriers and intestinal barrier genes and growth performance and reduced serum zonulin and endotoxin levels(P<0.05).Addi-tion of tannic acid to the diet inhibited the inflammatory response by reducing the number of coccidia oocysts in feces and the content of C.perfringens in the cecum.Specifically,tannic acid reduced the serum levels of C reactive protein,myeloperoxidase,and specific IgY and ileal mucosal secretory immunoglobulin A levels in the ileal mucosa compared with those in the NE-infected birds.NE-infected birds fed diets supplemented with tannic acid also showed significantly increased relative Anaerocolumna,Thermoanaerobacterium,and Thermosinus abundance(P<0.05);their microbial composition and functional predictions were similar to those of the NC group.Conclusions Tannic acid in the diet alleviated NE by enhancing the intestinal barrier and absorption function.The recommended dietary tannic acid additive level is 500–750 mg/kg.Our study findings would be useful in reducing related economic losses in the broiler industry.展开更多
Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection ra...Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.展开更多
In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGD...In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGDE was in particulate form with rough surface morphology and a diameter ranging from 10 to 30μm.The adsorption performance of the TA-EGDE was evaluated in a flow-through mode using water samples contaminated with methylene blue(MB)and two-component mixed dyes,respectively.The TA-EGDE provided adsorption capacity up to 721.8 mg·g^(-1)at 65°C for MB.It showed a high removal efficiency(99%)of MB(50 mg·L^(-1))from the water sample and could recovery 90%of the adsorbed MB by eluting with acidic ethanol aqueous solution.The excellent adsorption of MB and neutral red on the TA-EGDE may be the result of the synergy of electrostatic interaction andπ-πinteraction.Furthermore,the TA-EGDE could separate dyes from water samples contaminated with twocomponent mixed dyes with a separation coefficient ranging from 1.8 to 36.5.The anionic TA-EGDE would be an effective adsorbent to remove and recycle dyes from the contaminated water.展开更多
Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were us...Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.展开更多
基金supported by the General Program of Chongqing Natural Science Foundation(CSTB2022NSCQMSX1227 and CSTB2022NSCQ-MSX0459)the supports from the Fundamental Research Funds for the Central Universities(SWU-XDJH202314)。
文摘Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability.
基金the China Agriculture Research System program(CARS-41-G11).
文摘Background In broiler chickens,necrotic enteritis(NE)infection can reduce production performance.Tannic acid has shown great potential as a treatment of NE in broilers.However,the appropriate dosage of tannic acid in NE of broilers and the improvement effect on intestinal health are not very clear.In this study,we aimed to investigate the effects of different doses of tannic acid on the production performance,immunity,and intestinal health of broilers by constructing an NE model with C.perfringens infection and determining the appropriate dosage of tannic acid with regard to NE.Results Challenged birds showed significant reduction in body weight,villus height,and the ratio of villus height to crypt depth(P<0.05)and increase in the feed consumption gain ratio,intestinal lesion score,and crypt depth(P<0.05).The infection significantly reduced the relative Bacteroidota and Ligilactobacillus abundance(P<0.05)and increased the ratio of Firmicutes/Bacteroidota and cecal content of C.perfringens(P<0.05).Challenged birds fed diets supplemented with tannic acid showed significantly increased mRNA expression of nutrient transport carriers and intestinal barrier genes and growth performance and reduced serum zonulin and endotoxin levels(P<0.05).Addi-tion of tannic acid to the diet inhibited the inflammatory response by reducing the number of coccidia oocysts in feces and the content of C.perfringens in the cecum.Specifically,tannic acid reduced the serum levels of C reactive protein,myeloperoxidase,and specific IgY and ileal mucosal secretory immunoglobulin A levels in the ileal mucosa compared with those in the NE-infected birds.NE-infected birds fed diets supplemented with tannic acid also showed significantly increased relative Anaerocolumna,Thermoanaerobacterium,and Thermosinus abundance(P<0.05);their microbial composition and functional predictions were similar to those of the NC group.Conclusions Tannic acid in the diet alleviated NE by enhancing the intestinal barrier and absorption function.The recommended dietary tannic acid additive level is 500–750 mg/kg.Our study findings would be useful in reducing related economic losses in the broiler industry.
基金supported by grants from the National Natural Science Foundation of China (41662004)the Jiangxi Graduate Innovation Fund (YC2021-S557),China。
文摘Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.
文摘In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGDE was in particulate form with rough surface morphology and a diameter ranging from 10 to 30μm.The adsorption performance of the TA-EGDE was evaluated in a flow-through mode using water samples contaminated with methylene blue(MB)and two-component mixed dyes,respectively.The TA-EGDE provided adsorption capacity up to 721.8 mg·g^(-1)at 65°C for MB.It showed a high removal efficiency(99%)of MB(50 mg·L^(-1))from the water sample and could recovery 90%of the adsorbed MB by eluting with acidic ethanol aqueous solution.The excellent adsorption of MB and neutral red on the TA-EGDE may be the result of the synergy of electrostatic interaction andπ-πinteraction.Furthermore,the TA-EGDE could separate dyes from water samples contaminated with twocomponent mixed dyes with a separation coefficient ranging from 1.8 to 36.5.The anionic TA-EGDE would be an effective adsorbent to remove and recycle dyes from the contaminated water.
基金the financial support from the National Natural Science Foundation of China (Nos. 22178181 and 21876091)the Natural Science Foundation of Tianjin (No. 21JCZDJC00180)+1 种基金the Fundamental Research Funds for the Central Universities (Nankai University (No. 63213075))Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-06)。
文摘Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.