期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
1
作者 刘玲 HU Changgang +1 位作者 CHENG Wendong 刘兴泉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期142-149,共8页
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte... Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness. 展开更多
关键词 micro-arc oxidation tantalum alloy ADDITIVES tribology performance
下载PDF
Corrosion Behavior of a Titanium Alloy in Hot Nitric Acid Condensate 被引量:1
2
作者 Masayuki Takeuchi Yuichi Sano +3 位作者 Yasuo Nakajima Gunzo Uchiyama Yasuo Nojima Sachio Fujine 《Journal of Energy and Power Engineering》 2013年第6期1090-1096,共7页
The corrosion behavior of a titanium-5% tantalum alloy (Ti-STa) in hot nitric acid condensate was investigated to understand aging behavior ofreprocessing equipments. On the basis of long-term immersion tests, it wa... The corrosion behavior of a titanium-5% tantalum alloy (Ti-STa) in hot nitric acid condensate was investigated to understand aging behavior ofreprocessing equipments. On the basis of long-term immersion tests, it was determined that the corrosion of Ti-STa in nitric acid condensate is accelerated with an increase in the concentration. The corrosion rate was nearly constant during the immersion test and the coupons suffered from uniform corrosion. In addition, it is important to note that the nitric acid concentration in the condensate increased on addition of metal salts to the heated nitric acid solution. The larger valence of metal ions was contributed to the increase in the concentration of nitric acid condensate. Consequently, the metal salt in the heated nitric acid solution accelerates the corrosion of Ti-STa in the condensate. Therefore, the nitric acid condensate condition should be carefully considered for the corrosion environment of titanium and its alloys. 展开更多
关键词 Titanium-5% tantalum alloy corrosion spent nuclear fuel reprocessing nitric acid condensate metal salt effect Gibbsfree energy of hydration.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部