In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted in...In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.展开更多
基金Project supported by the Funds of the Natural Science Foundation of Guangdong Province(Nos.S2013010012463 and S2013010014485)the Excellent Teacher Scheme in Guangdong Higher Education Institutions(No.Yq2014332)the Funds of the Guangdong college discipline construction(Nos.2013KJCX0189 and 2014KZDXM063)
文摘In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.