How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received ex...Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD.展开更多
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar...Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.展开更多
The value of grape cultivars varies.The use of a mixture of cultivars can negate the benefits of improved cultivars and hamper the protection of genetic resources and the identification of new hybrid cultivars.Classif...The value of grape cultivars varies.The use of a mixture of cultivars can negate the benefits of improved cultivars and hamper the protection of genetic resources and the identification of new hybrid cultivars.Classifying cultivars based on their leaves is therefore highly practical.Transplanted grape seedlings take years to bear fruit,but leaves mature in months.Foliar morphology differs among cultivars,so identifying cultivars based on leaves is feasible.Different cultivars,however,can be bred from the same parents,so the leaves of some cultivars can have similar morphologies.In this work,a pyramid residual convolution neural network was developed to classify images of eleven grape cultivars.The model extracts multi-scale feature maps of the leaf images through the convolution layer and enters them into three residual convolution neural networks.Features are fused by adding the value of the convolution kernel feature matrix to enhance the attention on the edge and center regions of the leaves and classify the images.The results indicated that the average accuracy of the model was 92.26%for the proposed leaf dataset.The proposed model is superior to previous models and provides a reliable method for the fine-grained classification and identification of plant cultivars.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique...The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.展开更多
Influenza caused by influenza virus,seriously threaten human life and health.Drug treatment is one of the effective measurement.However,there are only two classes of drugs,one class is M2 blockers and another is neura...Influenza caused by influenza virus,seriously threaten human life and health.Drug treatment is one of the effective measurement.However,there are only two classes of drugs,one class is M2 blockers and another is neuraminidase(NA) inhibitors.The recent antiviral surveillance studies reported a global significant increase in M2 blocker resistance among influenza viruses,and the resistant virus strains against NA inhibitor are also reported in clinical treatment.Therefore thediscovery of new medicines with low resistance has become very urgent.As all known,traditional medicines with multi-target features and network mechanism often possess low resistance.Compound Yizhihao,which consists of radix isatidis,folium isatidis,Artemisia rupestris,is one of the famous traditional medicine for influenza treatment in China,however its mechanism of action against influenza is unclear.In this study,the multiple targets related with influenza disease and the known chemical constituents from Compound Yizhihao were collected,and multi-target QSAR(mt-QSAR) classification models were developed by Na?e Bayesian algorithm and verified by various datasets.Then the classification models were applied to predict the effective constituents and their drug targets.Finally,the constituent-target-pathway network was constructed,which revealed the effective constituents and their network mechanism in Compound Yizhihao.This study will lay important basis for the clinical uses for influenza treatment and for the further research and development of the effective constituents.展开更多
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported in part by the Natural Science Foundation of China(NSFC)underGrant No.51805192,Major Special Science and Technology Project of Hubei Province under Grant No.2020AEA009sponsored by the State Key Laboratory of Digital Manufacturing Equipment and Technology(DMET)of Huazhong University of Science and Technology(HUST)under Grant No.DMETKF2020029.
文摘Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD.
文摘Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.
基金This work was financially supported by the National Key Research and Development Project(Grant No.2020YFD1100601)。
文摘The value of grape cultivars varies.The use of a mixture of cultivars can negate the benefits of improved cultivars and hamper the protection of genetic resources and the identification of new hybrid cultivars.Classifying cultivars based on their leaves is therefore highly practical.Transplanted grape seedlings take years to bear fruit,but leaves mature in months.Foliar morphology differs among cultivars,so identifying cultivars based on leaves is feasible.Different cultivars,however,can be bred from the same parents,so the leaves of some cultivars can have similar morphologies.In this work,a pyramid residual convolution neural network was developed to classify images of eleven grape cultivars.The model extracts multi-scale feature maps of the leaf images through the convolution layer and enters them into three residual convolution neural networks.Features are fused by adding the value of the convolution kernel feature matrix to enhance the attention on the edge and center regions of the leaves and classify the images.The results indicated that the average accuracy of the model was 92.26%for the proposed leaf dataset.The proposed model is superior to previous models and provides a reliable method for the fine-grained classification and identification of plant cultivars.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金supported by the National Natural Science Foundation of China(Nos.61373121 and 61328205)Program for Sichuan Provincial Science Fund for Distinguished Young Scholars(No.13QNJJ0149)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina Scholarship Council(No.201507000032)
文摘The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.
基金supported by National Natural Science Foundation of China(81673480) Project of Urumqi science and Technology Bureau of the Xinjiang Uygur Autonomous Region(Y151310010)
文摘Influenza caused by influenza virus,seriously threaten human life and health.Drug treatment is one of the effective measurement.However,there are only two classes of drugs,one class is M2 blockers and another is neuraminidase(NA) inhibitors.The recent antiviral surveillance studies reported a global significant increase in M2 blocker resistance among influenza viruses,and the resistant virus strains against NA inhibitor are also reported in clinical treatment.Therefore thediscovery of new medicines with low resistance has become very urgent.As all known,traditional medicines with multi-target features and network mechanism often possess low resistance.Compound Yizhihao,which consists of radix isatidis,folium isatidis,Artemisia rupestris,is one of the famous traditional medicine for influenza treatment in China,however its mechanism of action against influenza is unclear.In this study,the multiple targets related with influenza disease and the known chemical constituents from Compound Yizhihao were collected,and multi-target QSAR(mt-QSAR) classification models were developed by Na?e Bayesian algorithm and verified by various datasets.Then the classification models were applied to predict the effective constituents and their drug targets.Finally,the constituent-target-pathway network was constructed,which revealed the effective constituents and their network mechanism in Compound Yizhihao.This study will lay important basis for the clinical uses for influenza treatment and for the further research and development of the effective constituents.