According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-ta...According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-targeting-motif RxLx within 100 residues adjacent to the signal peptide cleavage site. According to PEDNAT and COG of the GenBank database, the functions of this motif containing proteins included metabolism modification and cell secretion. We blasted them in GenBank and found 47.54% had highly conserved homologues in other species, among them 74.1% had putative functional domains. This suggests these proteins are presumably ancient and vertically transmitted within the species. Many of these domains belonged to proteins which played roles in the pathogenic process of other kinds of pathogens and some had already been proved to be pathogenic secretary proteins of Botrytis cinerea. So we postulated that proteins contained host-targeting-motif RxLx were candidates participating in the pathogenesis of Botrytis cinerea.展开更多
Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, do...Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, does not encode viral mi RNA. However, HCV infection alters the expression of host mi RNAs, either in cell culture or in patients with liver disease progression, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. In turn, host mi RNAs regulate HCV life cycle through directly binding to HCV RNAs or indirectly targeting cellular m RNAs. Increasing evidence demonstrates that mi RNAs are one of the centered factors in the interaction network between virus and host. The competitive viral and host RNA hypothesis proposes a latent cross-regulation pattern between host m RNAs and HCV RNAs. High loads of HCV RNA sequester and de-repress host mi RNAs from their normal host targets and thus disturb host gene expression, indicating a means of adaptation for HCV to establish a persistent infection. Some special mi RNAs are closely correlated with liver-specific disease progression and the changed levels of mi RNAs are even higher sensitivity and specificity than those of traditional proteins. Therefore, some of them can serve as novel diagnostic/prognostic biomarkers in HCVinfected patients with liver diseases. They are also attractive therapeutic targets for development of new anti-HCV agents.展开更多
基金Supported by Project of Kunming University (YJL11014)
文摘According to our previous study, saprophytic fungi Botrytis cinerea contained 579 predicted secretary proteins. Among them, we found that 122 of these proteins contained the highly conserved pathogenic-related host-targeting-motif RxLx within 100 residues adjacent to the signal peptide cleavage site. According to PEDNAT and COG of the GenBank database, the functions of this motif containing proteins included metabolism modification and cell secretion. We blasted them in GenBank and found 47.54% had highly conserved homologues in other species, among them 74.1% had putative functional domains. This suggests these proteins are presumably ancient and vertically transmitted within the species. Many of these domains belonged to proteins which played roles in the pathogenic process of other kinds of pathogens and some had already been proved to be pathogenic secretary proteins of Botrytis cinerea. So we postulated that proteins contained host-targeting-motif RxLx were candidates participating in the pathogenesis of Botrytis cinerea.
基金Supported by National Natural Science Foundation of China No.81321004 and No.81322050National Mega-Project for“R&D for Innovative Drugs”+3 种基金Ministry of Science and TechnologyChina No.2012ZX09301-002-001Ministry of EducationChina No.NCET-12-0072
文摘Micro RNAs(mi RNAs) are small noncoding RNAs. More than 2500 mature mi RNAs are detected in plants, animals and several types of viruses. Hepatitis C virus(HCV), which is a positive-sense, singlestranded RNA virus, does not encode viral mi RNA. However, HCV infection alters the expression of host mi RNAs, either in cell culture or in patients with liver disease progression, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. In turn, host mi RNAs regulate HCV life cycle through directly binding to HCV RNAs or indirectly targeting cellular m RNAs. Increasing evidence demonstrates that mi RNAs are one of the centered factors in the interaction network between virus and host. The competitive viral and host RNA hypothesis proposes a latent cross-regulation pattern between host m RNAs and HCV RNAs. High loads of HCV RNA sequester and de-repress host mi RNAs from their normal host targets and thus disturb host gene expression, indicating a means of adaptation for HCV to establish a persistent infection. Some special mi RNAs are closely correlated with liver-specific disease progression and the changed levels of mi RNAs are even higher sensitivity and specificity than those of traditional proteins. Therefore, some of them can serve as novel diagnostic/prognostic biomarkers in HCVinfected patients with liver diseases. They are also attractive therapeutic targets for development of new anti-HCV agents.