The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which c...The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter's projection position and results in migration through resolution cells, In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm.展开更多
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed ...This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.展开更多
An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f...An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61401024)the Shanghai Aerospace Science and Technology Innovation Foundation,China(Grant No.SAST201240)the Basic Research Foundation of Beijing Institute of Technology(Grant No.20140542001)
文摘The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter's projection position and results in migration through resolution cells, In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm.
基金Major Program of National Natural Science Founda-tion of China (60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.
文摘An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.