期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke 被引量:21
1
作者 Yi-hao Deng Hong-yun He +1 位作者 Li-qiang Yang Peng-yue Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1108-1114,共7页
The temporal dynamics of neuronal autophagy and apoptosis in the ischemic penumbra following stroke remains unclear.Therefore,in this study,we investigated the dynamic changes in autophagy and apoptosis in the penumbr... The temporal dynamics of neuronal autophagy and apoptosis in the ischemic penumbra following stroke remains unclear.Therefore,in this study,we investigated the dynamic changes in autophagy and apoptosis in the penumbra to provide insight into potential therapeutic targets for stroke.An adult Sprague-Dawley rat model of permanent ischemic stroke was prepared by middle cerebral artery occlusion.Neuronal autophagy and apoptosis in the penumbra post-ischemia were evaluated by western blot assay and immunofluorescence staining with antibodies against LC3-Ⅱ and cleaved caspase-3,respectively.Levels of both LC3-Ⅱ and cleaved caspase-3 in the penumbra gradually increased within 5 hours post-ischemia.Thereafter,levels of both proteins declined,especially LC3-Ⅱ.The cerebral infarct volume increased slowly 1–4 hours after ischemia,but subsequently increased rapidly until 5 hours after ischemia.The severity of the neurological deficit was positively correlated with infarct volume.LC3-Ⅱ and cleaved caspase-3 levels were high in the penumbra within 5 hours after ischemia,and after that,levels of these proteins decreased at different rates.LC3-Ⅱ levels were reduced to a very low level,but cleaved caspase-3 levels remained high 72 hours after ischemia.These results indicate that there are temporal differences in the activation status of the autophagic and apoptotic pathways.This suggests that therapeutic targeting of these pathways should take into consideration their unique temporal dynamics. 展开更多
关键词 neuronal autophagy permanent infarct deficit caspase neurological targeting occlusion unclear
下载PDF
Functional Analysis of Autophagy Genes via Agrobacterium-Mediated Transformation in the Vascular Wilt Fungus Verticillium dahliae 被引量:3
2
作者 Lei Zhou Jun Zhao +1 位作者 Wangzhen Guo Tianzhen Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2013年第8期421-431,共11页
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in tbliar infection by many... Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in tbliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agro- bacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant translbnnants per 1 × 10^4 conidia. V. dahliae mutants lacking either VdATG8 or VdATGI2 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild- type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in E dahliae. 展开更多
关键词 Verticillium dahliae autophagy ATMT: targeted gene replacement PATHOGENICITY
原文传递
Visualization of reticulophagy in living cells using an endoplasmic reticulum-targeted p62 mutant
3
作者 Liang Wang 《Science China(Life Sciences)》 SCIE CAS CSCD 2017年第4期333-344,共12页
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum(ER)fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Sev... Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum(ER)fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells.However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3-or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process. 展开更多
关键词 endoplasmic reticulum targeted mutant aggregate puncta homeostasis autophagy Figure lapse
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部