Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,w...Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,we propose a precise and efficient strategy for stabilizing lithium-metal batteries via a lithiophilic Ag-modified Cu current host(Li@CuM/Ag).By applying the magnetron sputtering method,the lithiophilic silver layer can be anchored homogeneously on the Cu mesh.The lithiophilic silver layer effectively guides uniform Li deposition in the 3D host and realizes spatial control over Li nucleation.In addition,a dendrite-free lithium anode is successfully realized,which has been proven by in situ optical dynamic tests and Li deposition simulations.The symmetrical cell can maintain a low overpotential(230 mV)and long cycle life(90 h)at a large current of 10 mA cm^(-2)for a plating amount of 3 mAh cm^(-2).Furthermore,Li@CuM/Ag||LiCoO2 cells exhibited a high-capacity retention rate(86.39%)after 150 cycles at 2 C.Lithiophilic hosts based on magnetron sputtering provide a feasible strategy for applications of lithium-metal batteries.展开更多
基金supported by the National Natural Science Foundation of China(U1802256,21875107)the Basic Research Program of Frontier Leading Technologies in Jiangsu Province(BK20202008)+1 种基金the Free Exploration Basic Research Project in Shenzhen Virtual University Park(2021Szvup062)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,we propose a precise and efficient strategy for stabilizing lithium-metal batteries via a lithiophilic Ag-modified Cu current host(Li@CuM/Ag).By applying the magnetron sputtering method,the lithiophilic silver layer can be anchored homogeneously on the Cu mesh.The lithiophilic silver layer effectively guides uniform Li deposition in the 3D host and realizes spatial control over Li nucleation.In addition,a dendrite-free lithium anode is successfully realized,which has been proven by in situ optical dynamic tests and Li deposition simulations.The symmetrical cell can maintain a low overpotential(230 mV)and long cycle life(90 h)at a large current of 10 mA cm^(-2)for a plating amount of 3 mAh cm^(-2).Furthermore,Li@CuM/Ag||LiCoO2 cells exhibited a high-capacity retention rate(86.39%)after 150 cycles at 2 C.Lithiophilic hosts based on magnetron sputtering provide a feasible strategy for applications of lithium-metal batteries.