Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extra...Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.展开更多
Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with ...Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.展开更多
The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold...The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold mine), the Yaouré complex (Perseus Mining mine) and the South Fetêkro belt (Bonikro, Hiré and Agbaou mines). For this study, a multi-scale approach was carried out at regional, mine and microscopic levels. At the regional scale, a comparative analysis of 1:200,000 scale geological maps revealed that 3 main lithologies are regularly repeated on and around the various mining sites. These are: undifferentiated volcanics, metagranodiorites and metasiltites dominated by meta-arenites. Most of these lithologies are affected by undifferentiated faults generally oriented NE-SW, N-S, ENE-WSW and WNW-ESE. In addition, gold and manganese occurrences are present on all the sites studied. At the mine scale, radarsat-1 images processing indicate that the main mining sites are generally located near or at the intersection of lineaments-oriented NE-SW or N-S on the one hand and E-W or ENE-WSW or WNW-ESE or again NW-SE on the other. These mines are also located at the interface between zones of high and low lineament density. At the microscopic scale, petrographic studies of undifferentiated volcanic samples from the various sites indicate that they consist of andesites, meta-andesites and tuffs.展开更多
Exosomes,the smallest extracellular vesicles,have gained significant attention as key mediators in intercellular communication,influencing both physiological and pathological processes,particularly in cancer progressi...Exosomes,the smallest extracellular vesicles,have gained significant attention as key mediators in intercellular communication,influencing both physiological and pathological processes,particularly in cancer progression.A recent review article by Wang et al was published in a timely manner to stimulate future research and facilitate practical developments for targeted treatment of hepatocellular carcinoma using exosomes,with a focus on the origin from which exosomes derive.If information about the mechanisms for delivering exosomes to specific cells is incorporated,the concept of targeted therapy for hepatocellular carcinoma using exosomes could be more comprehensively understood.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome(Ex)-based therapies,utilizing naturally derived nanoparticles,as a novel approach to targeted cancer treatment.AIM To explore th...BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome(Ex)-based therapies,utilizing naturally derived nanoparticles,as a novel approach to targeted cancer treatment.AIM To explore the targetability and anticancer effectiveness of small interfering peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 RNA(siPIN1)-loaded soluble a proliferation-inducing ligand(sAPRIL)-targeted Exs(designated as tEx[p])in the treatment of colon cancer models.METHODS tEx was generated by harvesting conditioned media from adipose-derived stem cells that had undergone transformation using pDisplay vectors encoding sAPRIL-binding peptide sequences.Subsequently,tEx[p]were created by incorporating PIN1 siRNA into the tEx using the Exofect kit.The therapeutic efficacy of these Exs was evaluated using both in vitro and in vivo models of colon cancer.RESULTS The tEx[p]group exhibited superior anticancer effects in comparison to other groups,including tEx,Ex[p],and Ex,demonstrated by the smallest tumor size,the slowest tumor growth rate,and the lightest weight of the excised tumors observed in the tEx[p]group(P<0.05).Moreover,analyses of the excised tumor tissues,using western blot analysis and immunohistochemical staining,revealed that tEx[p]treatment resulted in the highest increase in Ecadherin expression and the most significant reduction in the mesenchymal markers Vimentin and Snail(P<0.05),suggesting a more effective inhibition of epithelial-mesenchymal transition tEx[p],likely due to the enhanced delivery of siPIN1.CONCLUSION The use of bioengineered Exs targeting sAPRIL and containing siPIN1 demonstrated superior efficacy in inhibiting tumor growth and epithelial-mesenchymal transition,highlighting their potential as a therapeutic strategy for colon cancer.展开更多
Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expr...Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expression of focal adhesion kinase(FAK),which increases the risk of metastasis and recurrence.Nevertheless,the efficacy of FAK phosphorylation inhibitors is currently limited.Thus,investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis.This study examined the correlation between FAK expression and the prognosis of HCC.Additionally,we explored the impact of FAK degradation on HCC metastasis through wound healing experiments,transwell invasion experiments,and a xenograft tumor model.The expression of proteins related to epithelial-mesenchymal transition(EMT)was measured to elucidate the underlying mechanisms.The results showed that FAK PROTAC can degrade FAK,inhibit the migration and invasion of HCC cells in vitro,and notably decrease the lung metastasis of HCC in vivo.Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited.Consequently,degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis,holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.展开更多
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t...This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Atherosclerosis(AS)leads to atherosclerotic cardiovascular disease(ASCVD),the predominant cause of death worldwide.As traditional lipid-lowering therapies have encountered a bottleneck in dealing with diverse types of...Atherosclerosis(AS)leads to atherosclerotic cardiovascular disease(ASCVD),the predominant cause of death worldwide.As traditional lipid-lowering therapies have encountered a bottleneck in dealing with diverse types of atherosclerotic plaques and ASCVD,alternative therapies that can target other mechanisms are urgently needed.Recent studies have revealed that AS is rooted in disrupted immune responses,such as chronic local inflammation and autoimmune responses,and immunotherapies have emerged as a nascent avenue to control plaque development owing to their satisfactory effects and high cost efficiency.The atherosclerotic immune microenvironment(AIME)is the microenvironment in which diverse immune responses occur dynamically.AIME is characterized by persistent inflammatory responses,shifted immunometabolism,and the formation of adventitial neuroimmune cardiovascular interfaces,all of which are regarded as prospective targets for AS immunotherapy.Recently,the advent of nanotechnology has advanced AS immunotherapy targeting the AIME.Manifold nanoplatforms have greatly enriched AS therapeutics owing to their multimodal imaging and multichannel intervention capabilities.Here,we offer an overview of AIME and discuss how nanomedicines can assist in AS diagnosis and intervention.We introduce nanoplatforms integrated with imaging techniques,such as magnetic resonance imaging,photoacoustic imaging,fluorescence imaging,positron emission tomography,and ultrasound imaging,which can target AIME to realize plaque diagnosis.Moreover,we elaborated on nanomaterials that regulate innate immune responses,adaptive immune responses,and aberrant immunometabolism to achieve AIME modulation.Furthermore,we highlight the possible future directions of AS therapeutics,with a focus on AIME-targeted nanomedicines.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
[Objective] This study aimed to construct Myostatin (MSTN) gene targeting vector of mouse. [Method] Total RNA was extracted from hindlimb muscle tissues of mouse to synthesize cDNA as the template to clone the codin...[Objective] This study aimed to construct Myostatin (MSTN) gene targeting vector of mouse. [Method] Total RNA was extracted from hindlimb muscle tissues of mouse to synthesize cDNA as the template to clone the coding region of MSTN. The CDS of MSTN gene including 3 kb 5’ homologous arm and 1.4 kb 3’ homologous arm were inserted into vector pBluescript_SK + to construct the targeting vector pLoxP-5N3T-M. The neo and HSV-tk gene were cloned into vector pBluescript_SK+ as positive and negative selective gene. [Result] Restriction enzyme digestion and sequencing results showed that mouse MSTN gene was cloned into the targeting vector pLoxP-5N3T-M. [Conclusion] The mouse MSTN gene targeting vector pLoxP5N3T-M was successfully constructed.展开更多
Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusin...Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusing a signal peptide sequence at cpti 5' end and an endoplasm reticulum (ER) retention signal peptide at cpti3' end respectively. The signal peptide can direct the newly synthesized polypeptide into ER, while ER retention signal can make the protein retained in the ER and its derivative protein body. ELISA test indicated that the accumulation level of foreign CpTI protein in sck transgenic tobacco (Nicotiana tabacum L.) was two times higher than cpti transgenic tobaccos and some individuals were four times higher. At the same time, sck transgenic tobacco has a high resistance to Lepidoptera pest due to the increased accumulation level of foreign CpTI protein. The strategy of foreign protein targeting can be used to increase the accumulation level of foreign protein in transgenic plants and can be widely applied to other related research field in plant genetic engineering.展开更多
An anti-trichomonas vaginalis monoclonal antiboody was derivatized with palmitic acid using an activated ester of N-hydroxysuccinimide About 50% of the re-sulting antibody could be incorporated into liposomes.The lipo...An anti-trichomonas vaginalis monoclonal antiboody was derivatized with palmitic acid using an activated ester of N-hydroxysuccinimide About 50% of the re-sulting antibody could be incorporated into liposomes.The liposomes showed specific binding to T. vaginalis by IFA and cytotoxicity tests. These results clearly demonstrated the effectiveness of targeting of liposomes modified by monoclonal antibody in vitro.展开更多
The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scinti...The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金supported by the National Natural Science Foundation of China,No.82071278(to PY)Outstanding Young Medical Talents Project of Changhai Hospital,No.2021JCSQ03(to PY)+1 种基金Shanghai Sailing Program,No.20YF1448000(to XZ)Medical Health Science and Technology Project of Zhoushan City,No.2022JRC01(to HL).
文摘Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
基金Supported by Xi'an Jiaotong University Medical"Basic-Clinical"Integration Innovation Project,No.YXJLRH2022067Shaanxi Postdoctoral Research Program“Orlistat-loaded Nanoparticles as A Targeted Therapeutical Strategy for The Enhanced Treatment of Liver Cancer”,No.2023BSHYDZZ09.
文摘Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.
文摘The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold mine), the Yaouré complex (Perseus Mining mine) and the South Fetêkro belt (Bonikro, Hiré and Agbaou mines). For this study, a multi-scale approach was carried out at regional, mine and microscopic levels. At the regional scale, a comparative analysis of 1:200,000 scale geological maps revealed that 3 main lithologies are regularly repeated on and around the various mining sites. These are: undifferentiated volcanics, metagranodiorites and metasiltites dominated by meta-arenites. Most of these lithologies are affected by undifferentiated faults generally oriented NE-SW, N-S, ENE-WSW and WNW-ESE. In addition, gold and manganese occurrences are present on all the sites studied. At the mine scale, radarsat-1 images processing indicate that the main mining sites are generally located near or at the intersection of lineaments-oriented NE-SW or N-S on the one hand and E-W or ENE-WSW or WNW-ESE or again NW-SE on the other. These mines are also located at the interface between zones of high and low lineament density. At the microscopic scale, petrographic studies of undifferentiated volcanic samples from the various sites indicate that they consist of andesites, meta-andesites and tuffs.
文摘Exosomes,the smallest extracellular vesicles,have gained significant attention as key mediators in intercellular communication,influencing both physiological and pathological processes,particularly in cancer progression.A recent review article by Wang et al was published in a timely manner to stimulate future research and facilitate practical developments for targeted treatment of hepatocellular carcinoma using exosomes,with a focus on the origin from which exosomes derive.If information about the mechanisms for delivering exosomes to specific cells is incorporated,the concept of targeted therapy for hepatocellular carcinoma using exosomes could be more comprehensively understood.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
基金Supported by the National Research Foundation of Korea,No.NRF-2018R1D1A1B07047144.
文摘BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome(Ex)-based therapies,utilizing naturally derived nanoparticles,as a novel approach to targeted cancer treatment.AIM To explore the targetability and anticancer effectiveness of small interfering peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 RNA(siPIN1)-loaded soluble a proliferation-inducing ligand(sAPRIL)-targeted Exs(designated as tEx[p])in the treatment of colon cancer models.METHODS tEx was generated by harvesting conditioned media from adipose-derived stem cells that had undergone transformation using pDisplay vectors encoding sAPRIL-binding peptide sequences.Subsequently,tEx[p]were created by incorporating PIN1 siRNA into the tEx using the Exofect kit.The therapeutic efficacy of these Exs was evaluated using both in vitro and in vivo models of colon cancer.RESULTS The tEx[p]group exhibited superior anticancer effects in comparison to other groups,including tEx,Ex[p],and Ex,demonstrated by the smallest tumor size,the slowest tumor growth rate,and the lightest weight of the excised tumors observed in the tEx[p]group(P<0.05).Moreover,analyses of the excised tumor tissues,using western blot analysis and immunohistochemical staining,revealed that tEx[p]treatment resulted in the highest increase in Ecadherin expression and the most significant reduction in the mesenchymal markers Vimentin and Snail(P<0.05),suggesting a more effective inhibition of epithelial-mesenchymal transition tEx[p],likely due to the enhanced delivery of siPIN1.CONCLUSION The use of bioengineered Exs targeting sAPRIL and containing siPIN1 demonstrated superior efficacy in inhibiting tumor growth and epithelial-mesenchymal transition,highlighting their potential as a therapeutic strategy for colon cancer.
基金supported by the National Natural Science Foundation of China Fund Project(82272956).
文摘Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expression of focal adhesion kinase(FAK),which increases the risk of metastasis and recurrence.Nevertheless,the efficacy of FAK phosphorylation inhibitors is currently limited.Thus,investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis.This study examined the correlation between FAK expression and the prognosis of HCC.Additionally,we explored the impact of FAK degradation on HCC metastasis through wound healing experiments,transwell invasion experiments,and a xenograft tumor model.The expression of proteins related to epithelial-mesenchymal transition(EMT)was measured to elucidate the underlying mechanisms.The results showed that FAK PROTAC can degrade FAK,inhibit the migration and invasion of HCC cells in vitro,and notably decrease the lung metastasis of HCC in vivo.Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited.Consequently,degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis,holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.
文摘This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported by the State Key Laboratory of Analytical Chemistry for Life Science(5431ZZXM2405)National Key Research and Development Program of China(2022YFC2010004)Science and Technology Innovation 2030-Major Projects(2020AAA0109500).
文摘Atherosclerosis(AS)leads to atherosclerotic cardiovascular disease(ASCVD),the predominant cause of death worldwide.As traditional lipid-lowering therapies have encountered a bottleneck in dealing with diverse types of atherosclerotic plaques and ASCVD,alternative therapies that can target other mechanisms are urgently needed.Recent studies have revealed that AS is rooted in disrupted immune responses,such as chronic local inflammation and autoimmune responses,and immunotherapies have emerged as a nascent avenue to control plaque development owing to their satisfactory effects and high cost efficiency.The atherosclerotic immune microenvironment(AIME)is the microenvironment in which diverse immune responses occur dynamically.AIME is characterized by persistent inflammatory responses,shifted immunometabolism,and the formation of adventitial neuroimmune cardiovascular interfaces,all of which are regarded as prospective targets for AS immunotherapy.Recently,the advent of nanotechnology has advanced AS immunotherapy targeting the AIME.Manifold nanoplatforms have greatly enriched AS therapeutics owing to their multimodal imaging and multichannel intervention capabilities.Here,we offer an overview of AIME and discuss how nanomedicines can assist in AS diagnosis and intervention.We introduce nanoplatforms integrated with imaging techniques,such as magnetic resonance imaging,photoacoustic imaging,fluorescence imaging,positron emission tomography,and ultrasound imaging,which can target AIME to realize plaque diagnosis.Moreover,we elaborated on nanomaterials that regulate innate immune responses,adaptive immune responses,and aberrant immunometabolism to achieve AIME modulation.Furthermore,we highlight the possible future directions of AS therapeutics,with a focus on AIME-targeted nanomedicines.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金Supported by Project from Science and Technology Department of Guizhou Province ([2009]2173)~~
文摘[Objective] This study aimed to construct Myostatin (MSTN) gene targeting vector of mouse. [Method] Total RNA was extracted from hindlimb muscle tissues of mouse to synthesize cDNA as the template to clone the coding region of MSTN. The CDS of MSTN gene including 3 kb 5’ homologous arm and 1.4 kb 3’ homologous arm were inserted into vector pBluescript_SK + to construct the targeting vector pLoxP-5N3T-M. The neo and HSV-tk gene were cloned into vector pBluescript_SK+ as positive and negative selective gene. [Result] Restriction enzyme digestion and sequencing results showed that mouse MSTN gene was cloned into the targeting vector pLoxP-5N3T-M. [Conclusion] The mouse MSTN gene targeting vector pLoxP5N3T-M was successfully constructed.
文摘Targeting of the synthesized polypeptide in the cells is an important research field in modern cell biology. Cowpea trypsin inhibitor (cpti) gene has been modified and a fusion protein gene (sck) was produced by fusing a signal peptide sequence at cpti 5' end and an endoplasm reticulum (ER) retention signal peptide at cpti3' end respectively. The signal peptide can direct the newly synthesized polypeptide into ER, while ER retention signal can make the protein retained in the ER and its derivative protein body. ELISA test indicated that the accumulation level of foreign CpTI protein in sck transgenic tobacco (Nicotiana tabacum L.) was two times higher than cpti transgenic tobaccos and some individuals were four times higher. At the same time, sck transgenic tobacco has a high resistance to Lepidoptera pest due to the increased accumulation level of foreign CpTI protein. The strategy of foreign protein targeting can be used to increase the accumulation level of foreign protein in transgenic plants and can be widely applied to other related research field in plant genetic engineering.
文摘An anti-trichomonas vaginalis monoclonal antiboody was derivatized with palmitic acid using an activated ester of N-hydroxysuccinimide About 50% of the re-sulting antibody could be incorporated into liposomes.The liposomes showed specific binding to T. vaginalis by IFA and cytotoxicity tests. These results clearly demonstrated the effectiveness of targeting of liposomes modified by monoclonal antibody in vitro.
文摘The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.