本文介绍了一种在 NOW(Network of Workstation)环境中进行负载平衡的方法—— AL BSIN (A L oad Ban-lancing System in NOW) ,它采用分布式负载信息存储和交互的方式在节点间进行任务分配和负载平衡 .实验表明 ,此方法具有良好的自适...本文介绍了一种在 NOW(Network of Workstation)环境中进行负载平衡的方法—— AL BSIN (A L oad Ban-lancing System in NOW) ,它采用分布式负载信息存储和交互的方式在节点间进行任务分配和负载平衡 .实验表明 ,此方法具有良好的自适应性、可靠性和可扩放性 ,是展开更多
针对联邦学习客户端数据集的存储任务分配问题构建新型模型,为保证去中心化云存储网络的负载均衡,缩短存储数据上传/恢复时间,减少客户端存储总花费,提出了一种考虑客户端需求和全局负载的数据存储任务分配算法——URGL_allo(Allocation...针对联邦学习客户端数据集的存储任务分配问题构建新型模型,为保证去中心化云存储网络的负载均衡,缩短存储数据上传/恢复时间,减少客户端存储总花费,提出了一种考虑客户端需求和全局负载的数据存储任务分配算法——URGL_allo(Allocation Based on User Requirements and Global Load)算法。在节点分配阶段考虑全局负载、拓扑属性及客户端关注的存储价格和数据恢复时间等节点资源,结合万有引力定律定义新的节点排序方法,选择最佳存储任务分配节点。在链路分配阶段,使用Dijkstra算法计算以客户端节点为中心到网络中其他节点的最短路径,并选择两节点间最短路径集合中带宽值最大的路径进行分配。仿真结果表明,相比基于随机策略的分配算法(Random_allo),所提算法的负载均衡指数、客户端存储总花费分别降低了41.9%,5%,并且与基于链路带宽的贪婪算法的数据恢复时间相差不大,都稳定维持在(0,2]之间,是Random_allo算法的1/20,在全局负载和服务质量上的综合表现优于对比算法。展开更多
文摘本文介绍了一种在 NOW(Network of Workstation)环境中进行负载平衡的方法—— AL BSIN (A L oad Ban-lancing System in NOW) ,它采用分布式负载信息存储和交互的方式在节点间进行任务分配和负载平衡 .实验表明 ,此方法具有良好的自适应性、可靠性和可扩放性 ,是
文摘针对联邦学习客户端数据集的存储任务分配问题构建新型模型,为保证去中心化云存储网络的负载均衡,缩短存储数据上传/恢复时间,减少客户端存储总花费,提出了一种考虑客户端需求和全局负载的数据存储任务分配算法——URGL_allo(Allocation Based on User Requirements and Global Load)算法。在节点分配阶段考虑全局负载、拓扑属性及客户端关注的存储价格和数据恢复时间等节点资源,结合万有引力定律定义新的节点排序方法,选择最佳存储任务分配节点。在链路分配阶段,使用Dijkstra算法计算以客户端节点为中心到网络中其他节点的最短路径,并选择两节点间最短路径集合中带宽值最大的路径进行分配。仿真结果表明,相比基于随机策略的分配算法(Random_allo),所提算法的负载均衡指数、客户端存储总花费分别降低了41.9%,5%,并且与基于链路带宽的贪婪算法的数据恢复时间相差不大,都稳定维持在(0,2]之间,是Random_allo算法的1/20,在全局负载和服务质量上的综合表现优于对比算法。