Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear ...Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear dimension reduction principle could be respectively introduced into comprehensive kinematic dexterity performance evaluation of space 3R robot of different tasks. By comparing different dimension reduction effects, the KPCA method could deal more effectively with the nonlinear relationship among different single kinematic dexterity indexes, and its calculation result is more reasonable for containing more comprehensive information. KPCA' s calculation provides scientific basis for optimum order of robotic tasks, and furthermore a new optimization method for robotic task selection is proposed based on various performance indexes.展开更多
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.
基金Supported by the National Natural Science Foundation of China(No.51075005)the Beijing City Science and Technology Project(No.Z131100005313009)
文摘Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear dimension reduction principle could be respectively introduced into comprehensive kinematic dexterity performance evaluation of space 3R robot of different tasks. By comparing different dimension reduction effects, the KPCA method could deal more effectively with the nonlinear relationship among different single kinematic dexterity indexes, and its calculation result is more reasonable for containing more comprehensive information. KPCA' s calculation provides scientific basis for optimum order of robotic tasks, and furthermore a new optimization method for robotic task selection is proposed based on various performance indexes.