期刊文献+
共找到180,058篇文章
< 1 2 250 >
每页显示 20 50 100
Attention Markets of Blockchain-Based Decentralized Autonomous Organizations 被引量:1
1
作者 Juanjuan Li Rui Qin +3 位作者 Sangtian Guan Wenwen Ding Fei Lin Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1370-1380,共11页
The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the ne... The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the negative effects of pro-posers’attention-capturing strategies that contribute to the“tragedy of the commons”and ensure an efficient distribution of attention among multiple proposals,it is necessary to establish a market-driven allocation scheme for DAOs’attention.First,the Harberger tax-based attention markets are designed to facilitate its allocation via continuous and automated trading,where the individualized Harberger tax rate(HTR)determined by the pro-posers’reputation is adopted.Then,the Stackelberg game model is formulated in these markets,casting attention to owners in the role of leaders and other competitive proposers as followers.Its equilibrium trading strategies are also discussed to unravel the intricate dynamics of attention pricing.Moreover,utilizing the single-round Stackelberg game as an illustrative example,the existence of Nash equilibrium trading strategies is demonstrated.Finally,the impact of individualized HTR on trading strategies is investigated,and results suggest that it has a negative correlation with leaders’self-accessed prices and ownership duration,but its effect on their revenues varies under different conditions.This study is expected to provide valuable insights into leveraging attention resources to improve DAOs’governance and decision-making process. 展开更多
关键词 ATTENTION decentralized autonomous organizations Harberger tax Stackelberg game.
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
2
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:1
3
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells 被引量:1
4
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu Sag,Junggar Basin,NW China 被引量:1
5
作者 GONG Deyu LIU Zeyang +4 位作者 HE Wenjun ZHOU Chuanmin QIN Zhijun WEI Yanzhao YANG Chun 《Petroleum Exploration and Development》 SCIE 2024年第2期292-306,共15页
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio... Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag. 展开更多
关键词 Junggar Basin Mahu Sag Fengcheng Formation organic matter interglacial period VOLCANISM paleo-salinity paleo-environmental evolution
下载PDF
Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells 被引量:1
6
作者 Zhenguo Wang Jingbo Guo +6 位作者 Yaqin Pan Jin Fang Chao Gong Lixin Mo Qun Luo Jian Lin Changqi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期229-239,共11页
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological... Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm. 展开更多
关键词 flexible organic solar cell gravure printing large-area flexible interfacial layer rheology properties zinc oxide
下载PDF
The future of artificial hibernation medicine:protection of nerves and organs after spinal cord injury 被引量:1
7
作者 Caiyun Liu Haixin Yu +4 位作者 Zhengchao Li Shulian Chen Xiaoyin Li Xuyi Chen Bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期22-28,共7页
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi... Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine. 展开更多
关键词 artificial hibernation central thermostatic-resista nt regulation hypothermia multi-system protection neuroprotection organ protection spinal cord injury synthetic torpor
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:1
8
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
The Polish SMEs as Intelligent Organizations in an Era of Digital Transformation
9
作者 Piotr Adamczewski 《Chinese Business Review》 2023年第3期116-126,共11页
The impact that the digital transformation(DT)has on businesses,suppliers,and other third parties has increased significantly now.Digital transformation means improving traditional manufacturing processes with the hel... The impact that the digital transformation(DT)has on businesses,suppliers,and other third parties has increased significantly now.Digital transformation means improving traditional manufacturing processes with the help of digital technologies.The goal of digital transformation is to increase production efficiency and reduce costs,improve the quality of goods and services produced,and quickly adapt to changes in the global market.The state of industrial production is constantly changing due to the instability of global,economic and political decisions,so the adoption and expansion of digital solutions based on Industry 4.0,the Internet of things,machine learning,and other technologies of the future is accelerating.With the help of these technologies,companies are trying to change approaches and find new ways to solve problems.In this article the author analyzed the phenomenon of a complex system of knowledge management with tools as SMAC,AI,IoT and Edge computing in intelligent organizations as a part of intelligent economy.The arguments are illustrated with the results of own research conducted by the author in 2021-2022 in selected SMEs from the Polish Wielkopolska Province and their reference to the general development trends in this area. 展开更多
关键词 digital transformation ICT intelligent organization SMAC SME
下载PDF
Geophysical prediction of organic matter abundance in source rocks based on geochemical analysis:A case study of southwestern Bozhong Sag,Bohai Sea,China 被引量:1
10
作者 Xiang Wang Guang-Di Liu +5 位作者 Xiao-Lin Wang Jin-Feng Ma Zhen-Liang Wang Fei-Long Wang Ze-Zhang Song Chang-Yu Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期31-53,共23页
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a... The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited. 展开更多
关键词 Total organic carbon(TOC) Residual hydrocarbon generation potential(S_(2)) Geophysical prediction Seismic attribute Bozhong Sag Bohai Bay Basin
下载PDF
A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion-Dipole Interaction for All-Solid-State Lithium Organic Batteries
11
作者 Zhongping Li Kyeong-Seok Oh +6 位作者 Jeong-Min Seo Wenliang Qin Soohyoung Lee Lipeng Zhai Changqing Li Jong-Beom Baek Sang-Young Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期189-200,共12页
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers... Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries. 展开更多
关键词 Solid organic single-ion conductors Solvent-free covalent organic frameworks All-solid-state Li organic batteries Ion-dipole interaction Pore functionalization
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
12
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 Porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks Porous cages FULLERENE
下载PDF
Intellectual Capital in Knowledge Management Organizations
13
作者 Salwa Alhamoudi 《Economics World》 2023年第4期178-186,共9页
This paper templet is copyright by Global Conference on Business and Social Science organized by Global Academy of Training&Research(GATR)Enterprise.Intellectual capital and knowledge are the most important assets... This paper templet is copyright by Global Conference on Business and Social Science organized by Global Academy of Training&Research(GATR)Enterprise.Intellectual capital and knowledge are the most important assets of most organizations to ensure that determined or intended strategies can be implemented.The resource-based view of the firm considers the firm as a bundle of tangible resources,intangible resources,and organisational capabilities.An effective IC refers to the critical issues of organisational adaptation,survival and competence in the face of discontinuous environmental change.KM is essential for retaining employees’knowledge within a firm by using appropriate technology and tools to capture and store the knowledge residing in the minds of its employees,so it can be easily shared and reused.There is a growing realisation of the importance of the development and understanding of theory for both Intellectual Capital and Knowledge Management in relation to guide the successful development of Knowledge Management Organisations.This study is fundamental because it will provide the whole picture about the different levels of knowledge;individual,group and organizational,which express internal knowledge(formal and informal knowledge)and external knowledge such as customers and suppliers.The aim of this study is addressed some of the gaps in Intellectual Capital literature.It is necessary to investigate the interactions between IC components in Knowledge management organizations,which include human capital(HC),Organizational capital(OC),and Relational capital(RC).This is important in order to discover the extent to which these factors work together to achieve a network’s knowledge management in organization. 展开更多
关键词 knowledge management intellectual capital human capital organization capital relational capital
下载PDF
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
14
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Investigating ischemia and reperfusion-induced organ damage in severe cardiac arrest:A comprehensive proteomics perspective
15
作者 Ju Yeon Lee Muhammad Shoaib +8 位作者 Jin-Woong Choi Rishabh C.Choudhary Tai Yin Nara Yoon Kei Hayashida Seunguk J.Baek Santiago J.Miyara Lance B.Becker Junhwan Kim 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期427-430,共4页
Cardiac arrest(CA)is a life-threatening condition with complex pathophysiology and limited treatment options.To gain deeper insights into the pathological state of vital organs,we employed a proteomics analysis in rod... Cardiac arrest(CA)is a life-threatening condition with complex pathophysiology and limited treatment options.To gain deeper insights into the pathological state of vital organs,we employed a proteomics analysis in rodents to assess proteome alterations in the brain,heart,kidney,and liver using a rat model of CA.The brain displayed severe protein alterations in essential cellular pathways,including three major energy-generating pathways after CA,which worsened after resuscitation,resulting in the most significant overall protein changes among the organs.Conversely,the liver,experiencing the most substantial protein alterations post-CA,demonstrated significant recovery,presenting the least protein changes post-resuscitation. 展开更多
关键词 alterations organS DAMAGE
下载PDF
Recent progress of hybrid cathode interface layer for organic solar cells
16
作者 Jianru Wang Dan Zhou +9 位作者 Zhentian Xu Yujie Pu Senmei Lan Fang Wang Feiyan Wu Bin Hu Yongfen Tong Ruizhi Lv Honglin Chu Lie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期383-406,共24页
Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junctio... Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized. 展开更多
关键词 organic solar cells Theoperation mechanism organic hybrid cathode interface layer organic-inorganic hybrid CIL
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
17
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
The changes in soil organic carbon stock and quality across a subalpine forest successional series
18
作者 Fei Li Zhihui Wang +3 位作者 Jianfeng Hou Xuqing Li Dan Wang Wanqin Yang 《Forest Ecosystems》 SCIE CSCD 2024年第4期423-433,共11页
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes... Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge. 展开更多
关键词 Forest successional series Soil organic cubon stock Molecular composition Humification indices Soil organic carbon quality
下载PDF
Effect of Modified Biochar with Organic Fertiliser on the Growth and Development of Chinese Rose
19
作者 Liyuan Mu Hongyin Zhou +4 位作者 Junlei Wang Sijing Sun Haichan Yang Naiming Zhang Li Bao 《Advances in Bioscience and Biotechnology》 CAS 2024年第6期344-359,共16页
In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality ... In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry. 展开更多
关键词 BIOCHAR Modified Biochar Chinese Rose organic Fertiliser
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
20
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture Soil organic Carbon Carbon Fractions Rice-Wheat System organic Amendments
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部