the socialist democratic and legal system is further improved; the fundamental principle of administering the country according to law is implemented in an all-around way; people's rights and interests enjoy concr...the socialist democratic and legal system is further improved; the fundamental principle of administering the country according to law is implemented in an all-around way; people's rights and interests enjoy concrete respect and guarantees;展开更多
Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utiliz...Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utilization of multi-core processors and ensure the real-time performance of the system,it is necessary to adopt a reasonable real-time task allocation method,but the existing methods are only for single-core processors or the performance is too low to be applicable.Aiming at the task allocation problem when mixed real-time tasks are dynamically added,we propose a heuristic mixed real-time task allocation algorithm of virtual utilization VU-WF(Virtual Utilization Worst Fit)in multi-core processor.First,a 4-tuple task model is established to describe the fixedpoint task and the sporadic task in a unified manner.Then,a VDS(Virtual Deferral Server)for serving execution requests of fixed-point task is constructed and a schedulability test of the mixed task set is derived.Finally,combined with the analysis of VDS's capacity,VU-WF is proposed,which selects cores in ascending order of virtual utilization for the schedulability test.Experiments show that the overall performance of VU-WF is better than available algorithms,not only has a good schedulable ratio and load balancing but also has the lowest runtime overhead.In a 4-core processor,compared with available algorithms of the same schedulability ratio,the load balancing is improved by 73.9%,and the runtime overhead is reduced by 38.3%.In addition,we also develop a visual multi-core mixed task scheduling simulator RT-MCSS(open source)to facilitate the design and verification of multi-core scheduling for users.As the high performance,VU-WF can be widely used in resource-constrained and safety-critical real-time systems,such as spacecraft,self-driving cars,industrial robots,etc.展开更多
文摘the socialist democratic and legal system is further improved; the fundamental principle of administering the country according to law is implemented in an all-around way; people's rights and interests enjoy concrete respect and guarantees;
文摘Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utilization of multi-core processors and ensure the real-time performance of the system,it is necessary to adopt a reasonable real-time task allocation method,but the existing methods are only for single-core processors or the performance is too low to be applicable.Aiming at the task allocation problem when mixed real-time tasks are dynamically added,we propose a heuristic mixed real-time task allocation algorithm of virtual utilization VU-WF(Virtual Utilization Worst Fit)in multi-core processor.First,a 4-tuple task model is established to describe the fixedpoint task and the sporadic task in a unified manner.Then,a VDS(Virtual Deferral Server)for serving execution requests of fixed-point task is constructed and a schedulability test of the mixed task set is derived.Finally,combined with the analysis of VDS's capacity,VU-WF is proposed,which selects cores in ascending order of virtual utilization for the schedulability test.Experiments show that the overall performance of VU-WF is better than available algorithms,not only has a good schedulable ratio and load balancing but also has the lowest runtime overhead.In a 4-core processor,compared with available algorithms of the same schedulability ratio,the load balancing is improved by 73.9%,and the runtime overhead is reduced by 38.3%.In addition,we also develop a visual multi-core mixed task scheduling simulator RT-MCSS(open source)to facilitate the design and verification of multi-core scheduling for users.As the high performance,VU-WF can be widely used in resource-constrained and safety-critical real-time systems,such as spacecraft,self-driving cars,industrial robots,etc.