The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples...AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracte...Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets.展开更多
Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)c...Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)concentra-tions whereas cows with high circulating BCAA levels have low liver triglyceride(TG).Our objective was to determine the impact of BCAA and their corresponding ketoacids(branched-chain ketoacids,BCKA)on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.Methods Thirty-six multiparous Holstein cows were used in a randomized block design experiment.Cows were abomasally infused for the first 21 d postpartum with solutions of 1)saline(CON,n=12);2)BCA(67 g valine,50 g leu-cine,and 34 g isoleucine,n=12);and 3)BCK(77 g 2-ketovaline calcium salt,57 g 2-ketoleucine calcium salt,and 39 g 2-ketoisoleucine calcium salt,n=12).All cows received the same diet.Treatment effects were determined using PROC GLIMMIX in SAS.Results No differences were detected for body weight,body condition score,or dry matter intake averaged over the first 21 d postpartum.Cows receiving BCK had significantly lower liver TG concentrations compared to CON(6.60%vs.4.77%,standard error of the mean(SEM)0.49)during the first 3 weeks of lactation.Infusion of BCA increased milk yield(39.5 vs.35.3 kg/d,SEM 1.8),milk fat yield(2.10 vs.1.69 kg/d,SEM 0.08),and lactose yield(2.11 vs.1.67 kg/d,SEM 0.07)compared with CON.Compared to CON,cows receiving BCA had lower plasma glucose(55.0 vs.59.2 mg/dL,SEM 0.86)but higherβ-hydroxybutyrate(9.17 vs.6.00 mg/dL,SEM 0.80).Conclusions Overall,BCAA supplementation in this study improved milk production,whereas BCKA supplementa-tion reduced TG accumulation in the liver of fresh cows.展开更多
Background Low crude protein(CP)formulations with supplemental amino acids(AA)are used to enhance intestinal health,reduce costs,minimize environmental impact,and maintain growth performance of pigs.However,extensive ...Background Low crude protein(CP)formulations with supplemental amino acids(AA)are used to enhance intestinal health,reduce costs,minimize environmental impact,and maintain growth performance of pigs.However,extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met.Moreover,implementing a low CP formulation can increase the net energy(NE)content in feeds causing excessive fat deposition.Additional supplementation of functional AA,coupled with low CP formulation could further enhance intestinal health and glucose metabolism,improving nitrogen utilization,and growth performance.Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs.Methods In Exp.1,90 pigs(19.7±1.1 kg,45 barrows and 45 gilts)were assigned to 3 treatments:CON(18.0%CP,supplementing Lys,Met,and Thr),LCP(16.0%CP,supplementing Lys,Met,Thr,Trp,and Val),and LCPT(16.1%CP,LCP+0.05%SID Trp).In Exp.2,72 pigs(34.2±4.2 kg BW)were assigned to 3 treatments:CON(17.7%CP,meeting the requirements of Lys,Met,Thr,and Trp);LCP(15.0%CP,meeting Lys,Thr,Trp,Met,Val,Ile,and Phe);and VLCP(12.8%CP,meeting Lys,Thr,Trp,Met,Val,Ile,Phe,His,and Leu).In Exp.3,72 pigs(54.1±5.9 kg BW)were assigned to 3 treatments and fed experimental diets for 3 phases(grower 2,finishing 1,and finishing 2).Treatments were CON(18.0%,13.8%,12.7%CP for 3 phases;meeting Lys,Met,Thr,and Trp);LCP(13.5%,11.4%,10.4%CP for 3 phases;meeting Lys,Thr,Trp,Met,Val,Ile,and Phe);and LCPG(14.1%,12.8%,11.1%CP for 3 phases;LCP+Glu to match SID Glu with CON).All diets had 2.6 Mcal/kg NE.Results In Exp.1,overall,the growth performance did not differ among treatments.The LCPT increased(P<0.05)Claudin-1 expression in the duodenum and jejunum.The LCP and LCPT increased(P<0.05)CAT-1,4F2hc,and B0AT expressions in the jejunum.In Exp.2,overall,the VLCP reduced(P<0.05)G:F and BUN.The LCP and VLCP increased(P<0.05)the backfat thickness(BFT).In Exp.3,overall,growth performance and BFT did not differ among treatments.The LCPG reduced(P<0.05)BUN,whereas increased the insulin in plasma.The LCP and LCPG reduced(P<0.05)the abundance of Streptococcaceae,whereas the LCP reduced(P<0.05)Erysipelotrichaceae,and the alpha diversity.Conclusions When implementing low CP formulation,CP can be reduced by supplementation of Lys,Thr,Met,Trp,Val,and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition.Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.展开更多
BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amin...BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amino acids(AAAs:Tyrosine,tryptophan,phenylalanine)show high sensitivity and specificity in predicting diabetes in animals and predict T2DM 10-19 years before T2DM onset in clinical studies.However,improvement is needed to support its clinical utility.AIM To evaluate the effects of body mass index(BMI)and sex on BCAAs/AAAs in new-onset T2DM individuals with varying body weight.METHODS Ninety-seven new-onset T2DM patients(<12 mo)differing in BMI[normal weight(NW),n=33,BMI=22.23±1.60;overweight,n=42,BMI=25.9±1.07;obesity(OB),n=22,BMI=31.23±2.31]from the First People’s Hospital of Yunnan Province,Kunming,China,were studied.One-way and 2-way ANOVAs were conducted to determine the effects of BMI and sex on BCAAs/AAAs.RESULTS Fasting serum AAAs,BCAAs,glutamate,and alanine were greater and high-density lipoprotein(HDL)was lower(P<0.05,each)in OB-T2DM patients than in NW-T2DM patients,especially in male OB-T2DM patients.Arginine,histidine,leucine,methionine,and lysine were greater in male patients than in female patients.Moreover,histidine,alanine,glutamate,lysine,valine,methionine,leucine,isoleucine,tyrosine,phenylalanine,and tryptophan were significantly correlated with abdominal adiposity,body weight and BMI,whereas isoleucine,leucine and phenylalanine were negatively correlated with HDL.CONCLUSION Heterogeneously elevated amino acids,especially BCAAs/AAAs,across new-onset T2DM patients in differing BMI categories revealed a potentially skewed prediction of T2DM development.The higher BCAA/AAA levels in obese T2DM patients would support T2DM prediction in obese individuals,whereas the lower levels of BCAAs/AAAs in NW-T2DM individuals may underestimate T2DM risk in NW individuals.This potentially skewed T2DM prediction should be considered when BCAAs/AAAs are to be used as the T2DM predictor.展开更多
Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reporte...Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 20 to 55 (38.4 9.03). During the course of Study 2, 0.6 mL of SK-II FTE was applied to the face twice daily in the morning and afternoon. Skin measurements were performed at the start of the day (baseline) and at week 8. Results: In Study 1, we examined the stratum corneum levels of 23 NMF components comparing to the skin hydration status in 196 female subjects. The subjects were divided into two groups using the median of each measured NMF component. Skin hydration values were compared between the two groups defined for each NMF component. The results showed that subjects with higher levels of six amino acids, alanine, arginine, asparagine, glutamine, glycine, and histidine, exhibited significantly higher skin hydration than those with lower amino acid levels. No significant differences in skin hydration values were found for the other 17 NMF components. We then analyzed whether the sum of these six amino acid NMF components (called 6-AA-NMFs, hereafter) is affected by aging. The 6-AA-NMF level peaked in the subjects aged 25-29, and then gradually and significantly decreased with age. Interestingly, the 6-AA-NMF level was significantly correlated with the skin hydration value, but not with TEWL. In addition, the 6-AA-NMF level demonstrated significant correlations with the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Then, in Study 2, we examined whether the daily application of SK-II FTE affects the 6-AA-NMF level and visual aging parameters in 63 females. SK-II FTE demonstrated significant increases of the levels of 6-AA-NMFs and each of its components associated with hydration and barrier function, and improvements of skin texture, pores, wrinkles, and dullness (L-value) during the 8 weeks of treatment of facial skin. Conclusion: These clinical studies with large numbers of subjects across a wide age range revealed that six amino acids as NMF components were highly correlated with facial skin hydration in the stratum corneum. The levels of these six NMF components were also found to decrease at ages after the 30 s and were significantly correlated with major signs of skin aging. Notably, these six NMF components (6-AA-NMFs) were increased by SK-II FTE treatment associated with improvements of skin hydration and signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). These studies were limited by the lack of investigation of why some NMF components were not associated with skin hydration. More clinical trials examining various NMF components and their relationship with aging are anticipated.展开更多
In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first ...In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first time. The formation mecha- nism of excellent features was analyzed from the aspects of physiological traits, ge- ographical environments and constraint reasons. Thereby, the outstanding features of Tibetan swine could be extended continuously, and the poor characteristics should be improved in the future.展开更多
[Objective]The study aimed to investigate the effects of the amino acids of aspartate family on the biosynthesis of CoQ10 in Rhodpseudomonas palustris J001.[Method]The impacts of amino acids of this family on the bios...[Objective]The study aimed to investigate the effects of the amino acids of aspartate family on the biosynthesis of CoQ10 in Rhodpseudomonas palustris J001.[Method]The impacts of amino acids of this family on the biosynthesis of CoQ10 in Rhodopseudomnas palustris J001 were investigated by feeding these amino acids at the end of the logarithmic phase during incubation,which aim was for the optimization of the fermentation medium and genetic improvement of the strain for CoQ10 production.[Result]The results showed that feeding proper amount of methione(125 mg/L)could increase CoQ10 production by 20.2%,but feeding of lysine(above 500 mg/L),threonine(above 400 mg/L)and/or isoleucine(above 400 mg/L)repressed the biosynthesis of CoQ10.The results indicated that the aspartate kinase is subject to feedback inhibition or repression by lysine,threonine and isoleucine in the strain,which was unfavorable to the formation of methioine and then caused the decrease of CoQ10 production.[Conclusion]Lysine,threonine and isoleucine auxotrophic mutants with resistance to analogues of lysine,threonine and isoleucine could increase the production of CoQ10.展开更多
Aim To strdy the separation of native amino acids using capillary zone electro- pboresis (CZE) with indirect ultraviolet detecition. Methods 13 native amino acids were sepa- rated by capillary electrophoresis with ind...Aim To strdy the separation of native amino acids using capillary zone electro- pboresis (CZE) with indirect ultraviolet detecition. Methods 13 native amino acids were sepa- rated by capillary electrophoresis with indirect detection . The experiments were carried out with homemade CE apparatus under the following operating conditior conditions: a fused-silica capillary col- umn of 50.0cm effect length and of 75m i.d. was used. 7 organic acids were used as BGAE, and a positive potential of separation in CZE with indirect detection. After optimizing for l3 native amino acids were established. Conclusion The choice of BGAe is an important factor influencing the efficiency of separation in CZE with indiect detection .After optimizing the separation conditions a baseline separation for 13 native amino acids is obtained.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the physiological roles played by amino acids in growth, development, lactation, reproduction, and health of p...Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the physiological roles played by amino acids in growth, development, lactation, reproduction, and health of pigs to improve their protein nutrition and reduce the costs of pork production. Due to incomplete knowledge of amino acid biochemistry and nutrition, it was traditionally assumed that neonatal, post-weaning, growing-finishing, and gestating pigs could synthesize sufficient amounts of all "nutritionally nonessential amino acids" (NEAA) to support maximum production performance. Therefore, over the past 50 years, much emphasis has been placed on dietary requirements of nutritionally essential amino acids as building blocks for tissue proteins. However, a large body of literature shows that NEAA, particularly glutamine, glutamate, arginine and proline regulate physiological functions via cell signaling pathways, such as mammalian target of rapamycin, AMP-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and NEAA-derived gaseous molecules (e.g., nitric oxide, carbon monoxide, and hydrogen sulfide). Available evidence shows that under current feeding programs, only 70% and 55% of dietary amino acids are deposited as tissue proteins in 14-day-old sow-reared piglets and in 30-day-old pigs weaned at 21 days of age, respectively. Therefore, there is an urgent need to understand the robes and dietary requirements of NEAA in swine nutrition. This review highlights the basic biochemistry and physiology of absorption and utilization of amino acids in young pigs to enhance the efficacy of utilization of dietary protein and to minimize excretion of nitrogenous wastes from the body.展开更多
Background: There is growing interest in carbohydrate and protein nutrition to enhance the efficiency of animal production.Reduced-crude protein diets depress environmental pollution and feeding cost,but the challenge...Background: There is growing interest in carbohydrate and protein nutrition to enhance the efficiency of animal production.Reduced-crude protein diets depress environmental pollution and feeding cost,but the challenge to their adoption is maintaining digestive function and growth performance of birds.The present study was conducted to evaluate the influence of different dietary starch sources and protein levels on intestinal functionality and mucosal amino acid catabolism.Methods: Six dietary treatments,based on maize and soybean meal,were offered to 360 AA+male chicks from 6 to 35 d post-hatch as a 3 × 2 factorial array.Either waxy rice or amylose was added to a conventional maize-soy diet to provide three sources of starch with different digestion rates and relatively high and low dietary protein levels.Growth performance,parameters of intestinal functionality and concentrations of free amino acid in the portal circulation were determined.Results: In the grower phase,starch source influenced(P < 0.02) weight gain as diets containing amylose supported significantly higher weight gains than waxy rice.Significant increase of ileal ATP concentrations and Na^+/K^+-ATPase activity were found in amylose treatment.Also,amylose decreased BrdU positive cell numbers and down-regulated m RNA expression for CASP-3.GOT activity in the ileum was higher(P < 0.01) in birds offered low protein diets and there was a trend(P = 0.057) for waxy rice as a starch source to increase ileal GOT activities.There was a significant influence on the concentration of seventeen amino acids in the portal circulation with tryptophan the one exception.Waxy rice as a starch source generated 13.6% and 22.4% numerically higher concentrations of non-essential amino acids than maize and amylose,respectively.Conclusions: Amino acid catabolism in the gut mucosa is subject to nutritional regulation.Given that amino acids can be spared from catabolism in the gut mucosa by supplementation of amylose,it follows their post-enteral availability would be improved and intestinal energy would be derived more efficiently from glucose.展开更多
Branched chain amino acids(BCAAs)have been shown to affect gene expression,protein metabolism,apoptosis and regeneration of hepatocytes,and insulin resistance.They have also been shown to inhibit the proliferation of ...Branched chain amino acids(BCAAs)have been shown to affect gene expression,protein metabolism,apoptosis and regeneration of hepatocytes,and insulin resistance.They have also been shown to inhibit the proliferation of liver cancer cells in vitro,and are essential for lymphocyte proliferation and dendritic cell maturation.In patients with advanced chronic liver disease,BCAA concentrations are low,whereas the concentrations of aromatic amino acids such as phenylalanine and tyrosine are high,conditions that may be closely associated with hepatic encephalopathy and the prognosis of these patients.Based on these basic observations,patients with advanced chronic liver disease have been treated clinically with BCAA-rich medicines,with positive effects.展开更多
The intestine and the gut-associated lymphoid tissue(GALT) are essential components of whole body immune defense,protecting the body from foreign antigens and pathogens,while allowing tolerance to commensal bacteria...The intestine and the gut-associated lymphoid tissue(GALT) are essential components of whole body immune defense,protecting the body from foreign antigens and pathogens,while allowing tolerance to commensal bacteria and dietary antigens.The requirement for protein to support the immune system is well established.Less is known regarding the immune modifying properties of individual amino acids,particularly on the GALT.Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake,but the availability of specific dietary amino acids(in particular glutamine,glutamate,and arginine,and perhaps methionine,cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells.These amino acids each have unique properties that include,maintaining the integrity,growth and function of the intestine,as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers,specific T cell functions,and the secretion of IgA by lamina propria cells.Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters.Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.展开更多
Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry...Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.展开更多
Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current e...Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.展开更多
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
文摘AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金funded by the National Key R&D Program of China(No.2021YFD1300202)the nutritional value evaluation and parameter establishment of protein feedstuffs for sowsthe Ministry of Agriculture and Rural Affairs of the People’s Republic of China(125D0203-16190295)the Major Scientific and Technological Special Project of Sichuan Province(No.2021ZDZX0009)。
文摘Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets.
基金This work is supported by the Agriculture and Food Research Initiative competitive grant No.2021-67015-33383 from the USDA National Institute of Food and Agriculture(Washington,DC)and USDA,AgBioResearch,Michigan State University.
文摘Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)concentra-tions whereas cows with high circulating BCAA levels have low liver triglyceride(TG).Our objective was to determine the impact of BCAA and their corresponding ketoacids(branched-chain ketoacids,BCKA)on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.Methods Thirty-six multiparous Holstein cows were used in a randomized block design experiment.Cows were abomasally infused for the first 21 d postpartum with solutions of 1)saline(CON,n=12);2)BCA(67 g valine,50 g leu-cine,and 34 g isoleucine,n=12);and 3)BCK(77 g 2-ketovaline calcium salt,57 g 2-ketoleucine calcium salt,and 39 g 2-ketoisoleucine calcium salt,n=12).All cows received the same diet.Treatment effects were determined using PROC GLIMMIX in SAS.Results No differences were detected for body weight,body condition score,or dry matter intake averaged over the first 21 d postpartum.Cows receiving BCK had significantly lower liver TG concentrations compared to CON(6.60%vs.4.77%,standard error of the mean(SEM)0.49)during the first 3 weeks of lactation.Infusion of BCA increased milk yield(39.5 vs.35.3 kg/d,SEM 1.8),milk fat yield(2.10 vs.1.69 kg/d,SEM 0.08),and lactose yield(2.11 vs.1.67 kg/d,SEM 0.07)compared with CON.Compared to CON,cows receiving BCA had lower plasma glucose(55.0 vs.59.2 mg/dL,SEM 0.86)but higherβ-hydroxybutyrate(9.17 vs.6.00 mg/dL,SEM 0.80).Conclusions Overall,BCAA supplementation in this study improved milk production,whereas BCKA supplementa-tion reduced TG accumulation in the liver of fresh cows.
基金funded by USDA-NIFA Hatch Fund(#02893,Washington DC,USA)North Carolina Agricultural Foundation(#660101,Raleigh,NC,USA)+3 种基金Ajinomoto Co.,Inc(Tokyo,Japan)CJ Cheil Jedang Corp.(Seoul,Korea)Daesang Corp(Seoul,Korea)Fellowship to support MLTA from CNPq(Brasilia,Brazil).CNPq 305869/2018-3 to support MLTA。
文摘Background Low crude protein(CP)formulations with supplemental amino acids(AA)are used to enhance intestinal health,reduce costs,minimize environmental impact,and maintain growth performance of pigs.However,extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met.Moreover,implementing a low CP formulation can increase the net energy(NE)content in feeds causing excessive fat deposition.Additional supplementation of functional AA,coupled with low CP formulation could further enhance intestinal health and glucose metabolism,improving nitrogen utilization,and growth performance.Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs.Methods In Exp.1,90 pigs(19.7±1.1 kg,45 barrows and 45 gilts)were assigned to 3 treatments:CON(18.0%CP,supplementing Lys,Met,and Thr),LCP(16.0%CP,supplementing Lys,Met,Thr,Trp,and Val),and LCPT(16.1%CP,LCP+0.05%SID Trp).In Exp.2,72 pigs(34.2±4.2 kg BW)were assigned to 3 treatments:CON(17.7%CP,meeting the requirements of Lys,Met,Thr,and Trp);LCP(15.0%CP,meeting Lys,Thr,Trp,Met,Val,Ile,and Phe);and VLCP(12.8%CP,meeting Lys,Thr,Trp,Met,Val,Ile,Phe,His,and Leu).In Exp.3,72 pigs(54.1±5.9 kg BW)were assigned to 3 treatments and fed experimental diets for 3 phases(grower 2,finishing 1,and finishing 2).Treatments were CON(18.0%,13.8%,12.7%CP for 3 phases;meeting Lys,Met,Thr,and Trp);LCP(13.5%,11.4%,10.4%CP for 3 phases;meeting Lys,Thr,Trp,Met,Val,Ile,and Phe);and LCPG(14.1%,12.8%,11.1%CP for 3 phases;LCP+Glu to match SID Glu with CON).All diets had 2.6 Mcal/kg NE.Results In Exp.1,overall,the growth performance did not differ among treatments.The LCPT increased(P<0.05)Claudin-1 expression in the duodenum and jejunum.The LCP and LCPT increased(P<0.05)CAT-1,4F2hc,and B0AT expressions in the jejunum.In Exp.2,overall,the VLCP reduced(P<0.05)G:F and BUN.The LCP and VLCP increased(P<0.05)the backfat thickness(BFT).In Exp.3,overall,growth performance and BFT did not differ among treatments.The LCPG reduced(P<0.05)BUN,whereas increased the insulin in plasma.The LCP and LCPG reduced(P<0.05)the abundance of Streptococcaceae,whereas the LCP reduced(P<0.05)Erysipelotrichaceae,and the alpha diversity.Conclusions When implementing low CP formulation,CP can be reduced by supplementation of Lys,Thr,Met,Trp,Val,and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition.Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.
基金Supported by the Open Project Grant for Clinical Medical Center of Yunnan Province,No.2019LCZXKF-NM03Medical Leader Training Grant,No.L-201624and Yunnan Province Ten Thousand Talents:“Medical Expert”grant,No.YNWR-MY-2019-020.
文摘BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amino acids(AAAs:Tyrosine,tryptophan,phenylalanine)show high sensitivity and specificity in predicting diabetes in animals and predict T2DM 10-19 years before T2DM onset in clinical studies.However,improvement is needed to support its clinical utility.AIM To evaluate the effects of body mass index(BMI)and sex on BCAAs/AAAs in new-onset T2DM individuals with varying body weight.METHODS Ninety-seven new-onset T2DM patients(<12 mo)differing in BMI[normal weight(NW),n=33,BMI=22.23±1.60;overweight,n=42,BMI=25.9±1.07;obesity(OB),n=22,BMI=31.23±2.31]from the First People’s Hospital of Yunnan Province,Kunming,China,were studied.One-way and 2-way ANOVAs were conducted to determine the effects of BMI and sex on BCAAs/AAAs.RESULTS Fasting serum AAAs,BCAAs,glutamate,and alanine were greater and high-density lipoprotein(HDL)was lower(P<0.05,each)in OB-T2DM patients than in NW-T2DM patients,especially in male OB-T2DM patients.Arginine,histidine,leucine,methionine,and lysine were greater in male patients than in female patients.Moreover,histidine,alanine,glutamate,lysine,valine,methionine,leucine,isoleucine,tyrosine,phenylalanine,and tryptophan were significantly correlated with abdominal adiposity,body weight and BMI,whereas isoleucine,leucine and phenylalanine were negatively correlated with HDL.CONCLUSION Heterogeneously elevated amino acids,especially BCAAs/AAAs,across new-onset T2DM patients in differing BMI categories revealed a potentially skewed prediction of T2DM development.The higher BCAA/AAA levels in obese T2DM patients would support T2DM prediction in obese individuals,whereas the lower levels of BCAAs/AAAs in NW-T2DM individuals may underestimate T2DM risk in NW individuals.This potentially skewed T2DM prediction should be considered when BCAAs/AAAs are to be used as the T2DM predictor.
文摘Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 20 to 55 (38.4 9.03). During the course of Study 2, 0.6 mL of SK-II FTE was applied to the face twice daily in the morning and afternoon. Skin measurements were performed at the start of the day (baseline) and at week 8. Results: In Study 1, we examined the stratum corneum levels of 23 NMF components comparing to the skin hydration status in 196 female subjects. The subjects were divided into two groups using the median of each measured NMF component. Skin hydration values were compared between the two groups defined for each NMF component. The results showed that subjects with higher levels of six amino acids, alanine, arginine, asparagine, glutamine, glycine, and histidine, exhibited significantly higher skin hydration than those with lower amino acid levels. No significant differences in skin hydration values were found for the other 17 NMF components. We then analyzed whether the sum of these six amino acid NMF components (called 6-AA-NMFs, hereafter) is affected by aging. The 6-AA-NMF level peaked in the subjects aged 25-29, and then gradually and significantly decreased with age. Interestingly, the 6-AA-NMF level was significantly correlated with the skin hydration value, but not with TEWL. In addition, the 6-AA-NMF level demonstrated significant correlations with the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Then, in Study 2, we examined whether the daily application of SK-II FTE affects the 6-AA-NMF level and visual aging parameters in 63 females. SK-II FTE demonstrated significant increases of the levels of 6-AA-NMFs and each of its components associated with hydration and barrier function, and improvements of skin texture, pores, wrinkles, and dullness (L-value) during the 8 weeks of treatment of facial skin. Conclusion: These clinical studies with large numbers of subjects across a wide age range revealed that six amino acids as NMF components were highly correlated with facial skin hydration in the stratum corneum. The levels of these six NMF components were also found to decrease at ages after the 30 s and were significantly correlated with major signs of skin aging. Notably, these six NMF components (6-AA-NMFs) were increased by SK-II FTE treatment associated with improvements of skin hydration and signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). These studies were limited by the lack of investigation of why some NMF components were not associated with skin hydration. More clinical trials examining various NMF components and their relationship with aging are anticipated.
基金Supported by National Science and Technology Support Program"Integration and Demonstration of Security Technology for Production-Ecosystem-Life in Key Pastoral Areas"(2012BAD13B00)National Science and Technology Support Program"In-tegration and Demonstration of Optimized Security Technology for Production-Ecosystem-Life in the Pastoral Area of Northwest Sichuan"(2012BAD13B06)~~
文摘In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first time. The formation mecha- nism of excellent features was analyzed from the aspects of physiological traits, ge- ographical environments and constraint reasons. Thereby, the outstanding features of Tibetan swine could be extended continuously, and the poor characteristics should be improved in the future.
文摘[Objective]The study aimed to investigate the effects of the amino acids of aspartate family on the biosynthesis of CoQ10 in Rhodpseudomonas palustris J001.[Method]The impacts of amino acids of this family on the biosynthesis of CoQ10 in Rhodopseudomnas palustris J001 were investigated by feeding these amino acids at the end of the logarithmic phase during incubation,which aim was for the optimization of the fermentation medium and genetic improvement of the strain for CoQ10 production.[Result]The results showed that feeding proper amount of methione(125 mg/L)could increase CoQ10 production by 20.2%,but feeding of lysine(above 500 mg/L),threonine(above 400 mg/L)and/or isoleucine(above 400 mg/L)repressed the biosynthesis of CoQ10.The results indicated that the aspartate kinase is subject to feedback inhibition or repression by lysine,threonine and isoleucine in the strain,which was unfavorable to the formation of methioine and then caused the decrease of CoQ10 production.[Conclusion]Lysine,threonine and isoleucine auxotrophic mutants with resistance to analogues of lysine,threonine and isoleucine could increase the production of CoQ10.
文摘Aim To strdy the separation of native amino acids using capillary zone electro- pboresis (CZE) with indirect ultraviolet detecition. Methods 13 native amino acids were sepa- rated by capillary electrophoresis with indirect detection . The experiments were carried out with homemade CE apparatus under the following operating conditior conditions: a fused-silica capillary col- umn of 50.0cm effect length and of 75m i.d. was used. 7 organic acids were used as BGAE, and a positive potential of separation in CZE with indirect detection. After optimizing for l3 native amino acids were established. Conclusion The choice of BGAe is an important factor influencing the efficiency of separation in CZE with indiect detection .After optimizing the separation conditions a baseline separation for 13 native amino acids is obtained.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
基金supported by National Research Initiative Competitive Grants from the Animal Reproduction Program(2008-35203-19120)Animal Growth&Nutrient Utilization Program(2008-35206-18764)of the USDA National Institute of Food and Agriculture+6 种基金AHA(10GRNT4480020)Texas A&M AgriLife Research(H-8200)the National Basic Research Program of China(2013CB127302)the National Natural Science Foundation of China(30810103902,30972156,31172217,31272450,and 31272451)China Postdoctoral Science Foundation(2012T50163)Chinese Universities Scientific Funds(2012RC024)the Thousand-People Talent program at China Agricultural University
文摘Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the physiological roles played by amino acids in growth, development, lactation, reproduction, and health of pigs to improve their protein nutrition and reduce the costs of pork production. Due to incomplete knowledge of amino acid biochemistry and nutrition, it was traditionally assumed that neonatal, post-weaning, growing-finishing, and gestating pigs could synthesize sufficient amounts of all "nutritionally nonessential amino acids" (NEAA) to support maximum production performance. Therefore, over the past 50 years, much emphasis has been placed on dietary requirements of nutritionally essential amino acids as building blocks for tissue proteins. However, a large body of literature shows that NEAA, particularly glutamine, glutamate, arginine and proline regulate physiological functions via cell signaling pathways, such as mammalian target of rapamycin, AMP-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and NEAA-derived gaseous molecules (e.g., nitric oxide, carbon monoxide, and hydrogen sulfide). Available evidence shows that under current feeding programs, only 70% and 55% of dietary amino acids are deposited as tissue proteins in 14-day-old sow-reared piglets and in 30-day-old pigs weaned at 21 days of age, respectively. Therefore, there is an urgent need to understand the robes and dietary requirements of NEAA in swine nutrition. This review highlights the basic biochemistry and physiology of absorption and utilization of amino acids in young pigs to enhance the efficacy of utilization of dietary protein and to minimize excretion of nitrogenous wastes from the body.
基金supported by National Natural Science Foundation of China(No.31772620)China Agricultural Research System Poultry-related Science and Technology Innovation Team of Peking(BAIC 04-2018)
文摘Background: There is growing interest in carbohydrate and protein nutrition to enhance the efficiency of animal production.Reduced-crude protein diets depress environmental pollution and feeding cost,but the challenge to their adoption is maintaining digestive function and growth performance of birds.The present study was conducted to evaluate the influence of different dietary starch sources and protein levels on intestinal functionality and mucosal amino acid catabolism.Methods: Six dietary treatments,based on maize and soybean meal,were offered to 360 AA+male chicks from 6 to 35 d post-hatch as a 3 × 2 factorial array.Either waxy rice or amylose was added to a conventional maize-soy diet to provide three sources of starch with different digestion rates and relatively high and low dietary protein levels.Growth performance,parameters of intestinal functionality and concentrations of free amino acid in the portal circulation were determined.Results: In the grower phase,starch source influenced(P < 0.02) weight gain as diets containing amylose supported significantly higher weight gains than waxy rice.Significant increase of ileal ATP concentrations and Na^+/K^+-ATPase activity were found in amylose treatment.Also,amylose decreased BrdU positive cell numbers and down-regulated m RNA expression for CASP-3.GOT activity in the ileum was higher(P < 0.01) in birds offered low protein diets and there was a trend(P = 0.057) for waxy rice as a starch source to increase ileal GOT activities.There was a significant influence on the concentration of seventeen amino acids in the portal circulation with tryptophan the one exception.Waxy rice as a starch source generated 13.6% and 22.4% numerically higher concentrations of non-essential amino acids than maize and amylose,respectively.Conclusions: Amino acid catabolism in the gut mucosa is subject to nutritional regulation.Given that amino acids can be spared from catabolism in the gut mucosa by supplementation of amylose,it follows their post-enteral availability would be improved and intestinal energy would be derived more efficiently from glucose.
文摘Branched chain amino acids(BCAAs)have been shown to affect gene expression,protein metabolism,apoptosis and regeneration of hepatocytes,and insulin resistance.They have also been shown to inhibit the proliferation of liver cancer cells in vitro,and are essential for lymphocyte proliferation and dendritic cell maturation.In patients with advanced chronic liver disease,BCAA concentrations are low,whereas the concentrations of aromatic amino acids such as phenylalanine and tyrosine are high,conditions that may be closely associated with hepatic encephalopathy and the prognosis of these patients.Based on these basic observations,patients with advanced chronic liver disease have been treated clinically with BCAA-rich medicines,with positive effects.
基金supported by CJ Field’s funding from the Natural Sciences and Engineering Council of Canada (NSERC)
文摘The intestine and the gut-associated lymphoid tissue(GALT) are essential components of whole body immune defense,protecting the body from foreign antigens and pathogens,while allowing tolerance to commensal bacteria and dietary antigens.The requirement for protein to support the immune system is well established.Less is known regarding the immune modifying properties of individual amino acids,particularly on the GALT.Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake,but the availability of specific dietary amino acids(in particular glutamine,glutamate,and arginine,and perhaps methionine,cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells.These amino acids each have unique properties that include,maintaining the integrity,growth and function of the intestine,as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers,specific T cell functions,and the secretion of IgA by lamina propria cells.Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters.Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.
基金the financial support from China Postdoctoral Science Foundation(2018M643205)
文摘Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.
基金carried out in the framework of the Research on Regulating Mechanism of Amino Acid Composition of Rumen Microorganism in Ruminant Projectthe financial support from the National Natural Science Foundation of China (30571344)
文摘Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.