期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
应用t-SNE算法探讨实验室检查在自身免疫性疾病诊断上临床意义
1
作者 肖瑞平 朱有凯 《中国科技期刊数据库 医药》 2023年第8期59-62,共4页
应用机器学习算法t-SNE(t-Distributed Stochastic Neighbor Embedding)对自身免疫性疾病患者实验室检查数据进行数据分析,探索其中数据结构、数据之间的关系以及在自身免疫性疾病诊断方面的意义。方法 构建以t-SNE为基础的数据分析模型... 应用机器学习算法t-SNE(t-Distributed Stochastic Neighbor Embedding)对自身免疫性疾病患者实验室检查数据进行数据分析,探索其中数据结构、数据之间的关系以及在自身免疫性疾病诊断方面的意义。方法 构建以t-SNE为基础的数据分析模型,以原始实验室检查数据生成的大量高维数据集反复训练模型,确定各种重要参数和实验流程,最终对生成的一系列可视化散点图进行分析,揭示其中包含的信息和知识。结果 本研究建立了可靠性与实用性较强的数据分析模型以及具有临床实践意义的数据分析流程。通过对880例常见自身免疫性疾病病种的数据分析,发现超敏C反应蛋白将所有病例显著地分为两大类;同病种的病例具有明显聚集的数据簇结构,不同病例的数据点有重叠现象;通过比较不同的数据集分析结果,进一步简化了检查项目组合。结论 采用本研究建立的数据分析模型,能够将复杂的临床高维数据集通过计算简化为二维的可视化散点图。通过对散点图上重叠数据点的解析,快速地将疑难病例甄别出来,表明了数据分析模型的可靠性;研究结果表明超敏c反应蛋白可能在自身免疫性疾病的发生发展中具有启动者的作用;简化的检查项目组合也可以取得具有临床诊断价值的结果,在一定程度上节约了医疗资源。 展开更多
关键词 t-sne(t-Distributed stochastic neighbor embedding) 自身免疫性疾病 数据分析 超敏C反应蛋白
下载PDF
High-impedance Fault Section Location for Distribution Networks Based on t-distributed Stochastic Neighbor Embedding and Variable Mode Decomposition
2
作者 Zhihua Yin Yuping Zheng +3 位作者 Zhinong Wei Guoqiang Sun Sheng Chen Haixiang Zang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2024年第5期1495-1505,共11页
When high-impedance faults(HIFs)occur in resonant grounded distribution networks,the current that flows is extremely weak,and the noise interference caused by the distribution network operation and the sampling error ... When high-impedance faults(HIFs)occur in resonant grounded distribution networks,the current that flows is extremely weak,and the noise interference caused by the distribution network operation and the sampling error of the measurement devices further masks the fault characteristics.Consequently,locating a fault section with high sensitivity is difficult.Unlike existing technologies,this study presents a novel fault feature identification framework that addresses this issue.The framework includes three key steps:(1)utilizing the variable mode decomposition(VMD)method to denoise the fault transient zero-sequence current(TZSC);(2)employing a manifold learning algorithm based on t-distributed stochastic neighbor embedding(t-SNE)to further reduce the redundant information of the TZSC after denoising and to visualize fault information in high-dimensional 2D space;and(3)classifying the signal of each measurement point based on the fuzzy clustering method and combining the network topology structure to determine the fault section location.Numerical simulations and field testing confirm that the proposed method accurately detects the fault location,even under the influence of strong noise interference. 展开更多
关键词 High-impedance fault noise interference fault section location t-distributed stochastic neighbor embedding(t-sne) transient zero-sequence current
原文传递
基于融合特征t-SNE降维的控制图质量异常模式识别
3
作者 王宁 郭梓昱 +1 位作者 田淑珂 李可雨阳 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2024年第7期2381-2393,共13页
为解决控制图质量异常模式识别中,实时质量数据呈现出高维非线性等复杂特征导致模型过拟合以及失真等问题,提出一种基于融合特征t分布随机近邻嵌入(t-distributed stochastic neighbor embedding, t-SNE)降维的控制图质量异常模式识别方... 为解决控制图质量异常模式识别中,实时质量数据呈现出高维非线性等复杂特征导致模型过拟合以及失真等问题,提出一种基于融合特征t分布随机近邻嵌入(t-distributed stochastic neighbor embedding, t-SNE)降维的控制图质量异常模式识别方法.首先,从生产过程动态数据流中提取其统计特征、形状特征并与原始特征进行融合,形成动态数据流的高维融合特征;然后利用t-SNE算法对融合特征进行降维, t-SNE算法能够有效地处理线性和非线性数据,并产生更有意义的聚类;进而利用一维卷积神经网络(one-dimensional convolutional neural networks, 1DCNN)作为分类器实现复杂产品制造过程的质量异常模式识别;最后,通过仿真实验将本文所提方法与单一类型特征方法、融合特征方法以及融合特征主成分分析法(principal component analysis, PCA)、核主成分分析(kernel PCA, KPCA)和局部线性嵌入算法(locally linear embedding, LLE)降维方法的识别模型进行比较,并利用锂离子电池极片制造过程为例进一步说明本文模型的有效性与实用性.仿真与实例结果表明,本文所提算法具有更高的识别效率和精度,特别适用于处理在复杂产品制造过程背景下的高维非线性数据. 展开更多
关键词 控制图 模式识别 复杂产品制造过程 t分布随机近邻嵌入(t-sne) 卷积神经网络(CNN)
原文传递
Cryptographic Lightweight Encryption Algorithm with Dimensionality Reduction in Edge Computing
4
作者 D.Jerusha T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1121-1132,共12页
Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based ite... Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based items havebeen increasing tremendously. Apart from the advantages it holds, there remainlots of objections and restrictions, which hinders it from accomplishing the needof consumers all around the world. Some of the limitations are constraints oncomputing and hardware, functions and accessibility, remote administration andconnectivity. There is also a backlog in security due to its inability to create a trustbetween devices involved in encryption and decryption. This is because securityof data greatly depends upon faster encryption and decryption in order to transferit. In addition, its devices are considerably exposed to side channel attacks,including Power Analysis attacks that are capable of overturning the process.Constrained space and the ability of it is one of the most challenging tasks. Toprevail over from this issue we are proposing a Cryptographic LightweightEncryption Algorithm with Dimensionality Reduction in Edge Computing. Thet-Distributed Stochastic Neighbor Embedding is one of the efficient dimensionality reduction technique that greatly decreases the size of the non-linear data. Thethree dimensional image data obtained from the system, which are connected withit, are dimensionally reduced, and then lightweight encryption algorithm isemployed. Hence, the security backlog can be solved effectively using thismethod. 展开更多
关键词 Edge computing(e.g) dimensionality reduction(dr) t-distributed stochastic neighbor embedding(t-sne) principle component analysis(pca)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部