In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties ...In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties of tea garden soil were studied through the modification of the test sites with the non-farming land as the control. The results showed that human farming, mini-tiller farming and crawler tractor farming could improve the physical and chemical properties of soil. After farming, the soil had good water retention but low moisture content compared to the control group, while the soil bulk density and hardness value were significantly lower than those of the control, and the porosity of soil was significantly higher than that of contrast. With the passage of time, soil bulk density and hardness value gradually increased after farming, while the porosity of soil decreased gradually. There were great differences in the effects, efficiencies and costs of different farming methods. Crawler tractor had the best and most stable farming effect, and the operation efficiency was 10 times that of human farming while the cost was only 0.39 times of human farming. Therefore, it was feasible to adopt mini-tiller or crawler tractor to carry out mechanical farming of Guilin Maojian tea garden, which provided theoretical references for the soil property improvement using mechanical farming and was favorable for promoting the popularization of farming machines and the acceleration of mechanization of tea gardens. But for tea plantations that are intended to be mechanized, apart from the mechanical and technical personnel to be configured in place, the site conditions, planting modes and mechanical way reservation of tea garden should be planned accordingly. It is recommended to select flat or gentle slope for reclamation, and preference is given to non-sexual tea tree varieties with big line spacing over 180 cm long. Moreover, the main road construction should be more than 3.0 m, and trunk road 2.0 m or above. And isolation ditch and drain should be set between the tea garden and the surrounding mountain forests and farmland.展开更多
The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the lan...The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the land cover and land use patterns. Hence identifying causes and driving factors aid in taking appropriate measures to avert the impacts. This study determined the influences of sub basins dominated by tea plantations, forests and agricultural land uses in terms of streamflow and sediment flux variability in Sondu Miriu River Basin in Kenya, East Africa. Field-based investigations were conducted through sampling of flow velocities, turbidity and TSSC obtained from existing River Gauging Stations established within the three sub basins. The sub basin dominated by mixed farming land cover exhibits high turbidity approximately 620 NTU and high levels of total suspended sediment concentration (TSSC) of the order of 630 mg/l in wet seasons. The turbidity levels and TSSC were low in sub basins dominated by forest and tea plantations with approximately mean value of 17 - 29 NTU and 0.019 g/l. The sediment loads in sub basin dominated by mixed farming in the pre planting season in January to February were about 900 tonnes/day higher than that in crop growing season. In sub basins dominated by forest cover and tea plantations, sediment loads were low ranging between 2 - 7 tonnes/day. The relationship between stream flows and area under tea plantations, forests and mixed farming ranged between R<sup>2</sup> of 0.025 and 0.16. Tea plantations and forests influence the stream flows and sediment yields in long term duration while in mixed farming variations were observed seasonally. The strong relationships between rainfall and stream flows at the sub basins ranging between R<sup>2</sup> of 0.84 and 0.97 revealed the significance of rainfall in hydrologic response of the Sondu Miriu River Basin.展开更多
China started its organic tea production in early 1990s. Organic tea was growing very fast as it generated more incomes, provided more employment opportunities,contributed to an ecological sound future for humanity an...China started its organic tea production in early 1990s. Organic tea was growing very fast as it generated more incomes, provided more employment opportunities,contributed to an ecological sound future for humanity and made the agriculture more sustainable. Organic tea has become a major item of Chinese organic products. In 2000, acreage devoted to organic tea reached 10,000 hectares yielding 4,500 tons, 10 times higher than that in 1997 in terms of total acreage and yield. About 2,500 tons of total production was exported while 2,000 tons went to domestic consumers. Tea Research Institute of Chinese Academy of Agricultural Sciences has already worked on the research and development of organic tea. It has had full departments covering all aspects of tea sciences and technology. There have been nearly 100 certified organic tea farms in China. Certification has been done by the Organic Tea Research and Development Centre (OTRDC),and Tea Research Institute of the Chinese Academy of Agricultural Sciences. The OTRDC has developed the standards for organic tea based on the International Federation of Organic Agriculture Movement (IFOAM) basic standards, which has officially become Zhejiang provincial standards and will become national standards by the end of 2001. Further research and development in the aspects of production, marketing and technology dissemination were discussed by the authors in order to expand the organic production on larger areas under different agronomic and ecological conditions, so as to achieve higher level of productivity.展开更多
基金Supported by the Planned Project for Science and Technology Development of Guilin City,China(20150117-2)the Special Fund for the Basic Research Operating Expenses Program of Public Welfare Research Institute Directly Subordinate to Guangxi,China(GCJB-16-18)
文摘In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties of tea garden soil were studied through the modification of the test sites with the non-farming land as the control. The results showed that human farming, mini-tiller farming and crawler tractor farming could improve the physical and chemical properties of soil. After farming, the soil had good water retention but low moisture content compared to the control group, while the soil bulk density and hardness value were significantly lower than those of the control, and the porosity of soil was significantly higher than that of contrast. With the passage of time, soil bulk density and hardness value gradually increased after farming, while the porosity of soil decreased gradually. There were great differences in the effects, efficiencies and costs of different farming methods. Crawler tractor had the best and most stable farming effect, and the operation efficiency was 10 times that of human farming while the cost was only 0.39 times of human farming. Therefore, it was feasible to adopt mini-tiller or crawler tractor to carry out mechanical farming of Guilin Maojian tea garden, which provided theoretical references for the soil property improvement using mechanical farming and was favorable for promoting the popularization of farming machines and the acceleration of mechanization of tea gardens. But for tea plantations that are intended to be mechanized, apart from the mechanical and technical personnel to be configured in place, the site conditions, planting modes and mechanical way reservation of tea garden should be planned accordingly. It is recommended to select flat or gentle slope for reclamation, and preference is given to non-sexual tea tree varieties with big line spacing over 180 cm long. Moreover, the main road construction should be more than 3.0 m, and trunk road 2.0 m or above. And isolation ditch and drain should be set between the tea garden and the surrounding mountain forests and farmland.
文摘The changing patterns of land cover and land use in the tropical river basin over time are critical. The hydrological phenomena at basin and sub basin scale are affected positively or negatively by dynamics of the land cover and land use patterns. Hence identifying causes and driving factors aid in taking appropriate measures to avert the impacts. This study determined the influences of sub basins dominated by tea plantations, forests and agricultural land uses in terms of streamflow and sediment flux variability in Sondu Miriu River Basin in Kenya, East Africa. Field-based investigations were conducted through sampling of flow velocities, turbidity and TSSC obtained from existing River Gauging Stations established within the three sub basins. The sub basin dominated by mixed farming land cover exhibits high turbidity approximately 620 NTU and high levels of total suspended sediment concentration (TSSC) of the order of 630 mg/l in wet seasons. The turbidity levels and TSSC were low in sub basins dominated by forest and tea plantations with approximately mean value of 17 - 29 NTU and 0.019 g/l. The sediment loads in sub basin dominated by mixed farming in the pre planting season in January to February were about 900 tonnes/day higher than that in crop growing season. In sub basins dominated by forest cover and tea plantations, sediment loads were low ranging between 2 - 7 tonnes/day. The relationship between stream flows and area under tea plantations, forests and mixed farming ranged between R<sup>2</sup> of 0.025 and 0.16. Tea plantations and forests influence the stream flows and sediment yields in long term duration while in mixed farming variations were observed seasonally. The strong relationships between rainfall and stream flows at the sub basins ranging between R<sup>2</sup> of 0.84 and 0.97 revealed the significance of rainfall in hydrologic response of the Sondu Miriu River Basin.
文摘China started its organic tea production in early 1990s. Organic tea was growing very fast as it generated more incomes, provided more employment opportunities,contributed to an ecological sound future for humanity and made the agriculture more sustainable. Organic tea has become a major item of Chinese organic products. In 2000, acreage devoted to organic tea reached 10,000 hectares yielding 4,500 tons, 10 times higher than that in 1997 in terms of total acreage and yield. About 2,500 tons of total production was exported while 2,000 tons went to domestic consumers. Tea Research Institute of Chinese Academy of Agricultural Sciences has already worked on the research and development of organic tea. It has had full departments covering all aspects of tea sciences and technology. There have been nearly 100 certified organic tea farms in China. Certification has been done by the Organic Tea Research and Development Centre (OTRDC),and Tea Research Institute of the Chinese Academy of Agricultural Sciences. The OTRDC has developed the standards for organic tea based on the International Federation of Organic Agriculture Movement (IFOAM) basic standards, which has officially become Zhejiang provincial standards and will become national standards by the end of 2001. Further research and development in the aspects of production, marketing and technology dissemination were discussed by the authors in order to expand the organic production on larger areas under different agronomic and ecological conditions, so as to achieve higher level of productivity.