The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,e...The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.展开更多
How to cultivate and improve graduate students’innovation and practical abilities in software engineering through the curriculum and teaching mode reform is an important issue.In this paper,a research literacy-driven...How to cultivate and improve graduate students’innovation and practical abilities in software engineering through the curriculum and teaching mode reform is an important issue.In this paper,a research literacy-driven teaching mode is proposed.It assists in the reform of the curriculum system.Then,a curriculum system construction framework is proposed,which involves the integration of research literacy into classroom teaching content.It assists in the cultivation of research abilities of graduate students in software engineering.The effectiveness of the curriculum reform is demonstrated through questionnaire surveys and research outcomes of the project team.The results show that the methods explored in this paper can serve as valuable references for future course design and teaching practice in computer-related courses for graduates.展开更多
Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore...Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.展开更多
This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and t...This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and the challenges and solutions faced.The new model and reform must focus on cultivating practical abilities,introducing interdisciplinary knowledge,and strengthening innovation awareness and entrepreneurial spirit.The process of reform and innovation is carried out from the aspects of teaching methods,teaching means,and course performance evaluation in the teaching practice of software engineering courses.We adopt a method of“question guiding,simple and easy to understand,flexible and diverse,and emphasizing practical results”,optimizing the curriculum design,providing diverse learning opportunities,and establishing a platform for the industry-university-research cooperation.Our teaching philosophy is to adhere to the viewpoint of innovative teaching ideas,optimizing teaching methods and teaching means,and comprehensively improving the teaching quality and level of software engineering education.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
This paper explores the reform and practice of software engineering-related courses based on the competency model of the Computing Curricula,and proposes some measures of teaching reform and talent cultivation in soft...This paper explores the reform and practice of software engineering-related courses based on the competency model of the Computing Curricula,and proposes some measures of teaching reform and talent cultivation in software engineering.The teaching reform emphasizes student-centered education,and focuses on the cultivation and enhancement of students’knowledge,skills,and dispositions.Based on the three elements of the competency model,specific measures of teaching reform are proposed for some professional courses in software engineering,to strengthen course relevance,improve knowledge systems,reform practical modes with a focus on skill development,and cultivate good dispositions through student-centered education.The teaching reform’s attempts and practice are conducted in some courses such as Advanced Web Technologies,Software Engineering,and Intelligent Terminal Systems and Application Development.Through the analysis and comparison of the implementation effects,significant improvements are observed in teaching effectiveness,students’mastery of knowledge and skills are noticeably improved,and the expected goals of the teaching reform are achieved.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h...Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
A summary of the exploration of the teaching mode of the general practice teaching clinic, a summary of the deficiencies of the teaching clinic and a summary of the significance of the establishment of the general pra...A summary of the exploration of the teaching mode of the general practice teaching clinic, a summary of the deficiencies of the teaching clinic and a summary of the significance of the establishment of the general practice teaching clinic are presented with a view to promoting the development of general practice and cultivating more excellent successors in general practice.展开更多
The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as...The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8].展开更多
Synthetic biology is a new frontier of life science,which aims to design,transform and even synthesize organisms with engineering design concept.Doing a good job in the teaching of"synthetic biology"is of gr...Synthetic biology is a new frontier of life science,which aims to design,transform and even synthesize organisms with engineering design concept.Doing a good job in the teaching of"synthetic biology"is of great significance to the cultivation and reserve of biotechnology professionals in China,and also has an important impact on students' employment competitiveness.Under the background of"new engineering",the course reform of"synthetic biology"was carried out in terms of the construction of teaching staff,teaching methods,students' participation and the innovation of course content,and specific reform suggestions were put forward,hoping to effectively promote the sustainable development of"synthetic biology"and effectively improve the quality of education.展开更多
Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Mo...Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.展开更多
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ...When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.展开更多
BACKGROUND With the continuous development and progress of medical technology,the position of surgical nursing in the field of clinical medicine is becoming in-creasingly prominent.As an important branch of the surgic...BACKGROUND With the continuous development and progress of medical technology,the position of surgical nursing in the field of clinical medicine is becoming in-creasingly prominent.As an important branch of the surgical field,the nursing requirements and difficulty of gastrointestinal surgery are also increasing.In order to improve the teaching quality of nursing care in gastrointestinal surgery,many educators and researchers are actively exploring new teaching methods.Among them,the teaching method case-based learning(CBL),scene-simulated learning(SSL),task-based learning(TBL),combining self-evaluation and training mode is considered as an effective method.This method aims to help students to better master knowledge and skills and improve their comprehensive quality by cultivating their self-evaluation ability.AIM To explore the practical effect of CBL-SSL-TBL combined with training mode and student self-assessment in nursing teaching of gastrointestinal surgery.METHODS Seventy-one nursing interns in our hospital from December 2020 to December 2021 were selected.According to different teaching modes,they were divided into observation group CBL-SSL-TBL combined with training mode combined with student self-assessment and control group(conventional teaching mode),of which 36 were in observation group and 35 were in control group.The results of operational skills,theoretical knowledge,nursing students'satisfaction,learning effectiveness questionnaire and teaching effect were compared between the two groups.RESULTS Compared between the two groups,the operational skills and theoretical knowledge scores of the observation group were higher than those of the control group,and the difference was statistically significant(P<0.05).Compared between the two groups,the total satisfaction ratio of the observation group was higher than that of the control group,the difference was statistically significant(P<0.05).Compared between the two groups,the observation group was lower than the control group in the questionnaire results of learning efficacy,and the difference was statistically significant(P<0.05).Compared between the two groups,the proportion of thinking ability,subjective initiative and understanding of theoretical knowledge in the observation group was higher than that in the control group,the difference was statistically significant(P<0.05).CONCLUSION The use of CBL-SSL-TBL combined with training mode and student self-assessment in gastrointestinal surgery nursing teaching can improve the operational skills of nursing interns,theoretical knowledge and satisfaction scores of nursing students,improve the results of learning efficiency questionnaire and teaching effect,which can be popularized in clinical teaching.展开更多
In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current secu...In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.展开更多
The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which ...The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.展开更多
文摘The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.
基金supported by the National Natural Science Foundation of China(62102291)the Ministry ofEducation’s Industry School Cooperation Collaborative Education Project(220606008213849)the Opening Foundation of Engineering Research Center of Hubei Province for Clothing Information(N2022HBCI02)。
文摘How to cultivate and improve graduate students’innovation and practical abilities in software engineering through the curriculum and teaching mode reform is an important issue.In this paper,a research literacy-driven teaching mode is proposed.It assists in the reform of the curriculum system.Then,a curriculum system construction framework is proposed,which involves the integration of research literacy into classroom teaching content.It assists in the cultivation of research abilities of graduate students in software engineering.The effectiveness of the curriculum reform is demonstrated through questionnaire surveys and research outcomes of the project team.The results show that the methods explored in this paper can serve as valuable references for future course design and teaching practice in computer-related courses for graduates.
基金supported by Guangdong Hardware and System Teaching and Research Office(Quality Engineeringproject No.HITSZERP22002)+2 种基金Guangdong Province Education Science Planning Project(Higher Education Project,Project No.2022GXJK431)Harbin Institute of Technology(Shenzhen)Course Ideological and Political Project(Project No.HITSZIP21003)Construction Project of Teachers College of Harbin Institute of Technology(Shenzhen)(Project No.HITSZSFXY202201)。
文摘Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.
基金supported in part by the postgraduate demonstration course of Guangdong Province Department of Education Programmed Trading(No.2023SFKC_022)the Computer Architecture First Class Course Project,South China Normal University-Baidu Pineapple Talent Training Practice Basethe 2023 Project of Computer Education Research Association of Chinese Universities(No.CERACU2023R02)。
文摘This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and the challenges and solutions faced.The new model and reform must focus on cultivating practical abilities,introducing interdisciplinary knowledge,and strengthening innovation awareness and entrepreneurial spirit.The process of reform and innovation is carried out from the aspects of teaching methods,teaching means,and course performance evaluation in the teaching practice of software engineering courses.We adopt a method of“question guiding,simple and easy to understand,flexible and diverse,and emphasizing practical results”,optimizing the curriculum design,providing diverse learning opportunities,and establishing a platform for the industry-university-research cooperation.Our teaching philosophy is to adhere to the viewpoint of innovative teaching ideas,optimizing teaching methods and teaching means,and comprehensively improving the teaching quality and level of software engineering education.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金supported by the Teaching Reform Projects of Colleges in Hunan Province(No.HNJG-2022-1410,No.HNJG-2020-0489,No.HNJG-2022-0785,and No.HNJG-2022-0792)Industry-universityCooperative Project of Ministry of Education(No.220506194233806)the Teaching Reform Project of Hunan University of Science and Technology(No.2020XXJG07)。
文摘This paper explores the reform and practice of software engineering-related courses based on the competency model of the Computing Curricula,and proposes some measures of teaching reform and talent cultivation in software engineering.The teaching reform emphasizes student-centered education,and focuses on the cultivation and enhancement of students’knowledge,skills,and dispositions.Based on the three elements of the competency model,specific measures of teaching reform are proposed for some professional courses in software engineering,to strengthen course relevance,improve knowledge systems,reform practical modes with a focus on skill development,and cultivate good dispositions through student-centered education.The teaching reform’s attempts and practice are conducted in some courses such as Advanced Web Technologies,Software Engineering,and Intelligent Terminal Systems and Application Development.Through the analysis and comparison of the implementation effects,significant improvements are observed in teaching effectiveness,students’mastery of knowledge and skills are noticeably improved,and the expected goals of the teaching reform are achieved.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
文摘Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.
文摘A summary of the exploration of the teaching mode of the general practice teaching clinic, a summary of the deficiencies of the teaching clinic and a summary of the significance of the establishment of the general practice teaching clinic are presented with a view to promoting the development of general practice and cultivating more excellent successors in general practice.
文摘The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8].
基金Supported by The Innovative Experimental Project of Provincial Higher Education Institutions by Sichuan Provincial Department of Education in 2023(90).
文摘Synthetic biology is a new frontier of life science,which aims to design,transform and even synthesize organisms with engineering design concept.Doing a good job in the teaching of"synthetic biology"is of great significance to the cultivation and reserve of biotechnology professionals in China,and also has an important impact on students' employment competitiveness.Under the background of"new engineering",the course reform of"synthetic biology"was carried out in terms of the construction of teaching staff,teaching methods,students' participation and the innovation of course content,and specific reform suggestions were put forward,hoping to effectively promote the sustainable development of"synthetic biology"and effectively improve the quality of education.
文摘Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.
基金the R&D&I,Spain grants PID2020-119478GB-I00 and,PID2020-115832GB-I00 funded by MCIN/AEI/10.13039/501100011033.N.Rodríguez-Barroso was supported by the grant FPU18/04475 funded by MCIN/AEI/10.13039/501100011033 and by“ESF Investing in your future”Spain.J.Moyano was supported by a postdoctoral Juan de la Cierva Formación grant FJC2020-043823-I funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR.J.Del Ser acknowledges funding support from the Spanish Centro para el Desarrollo Tecnológico Industrial(CDTI)through the AI4ES projectthe Department of Education of the Basque Government(consolidated research group MATHMODE,IT1456-22)。
文摘When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
文摘BACKGROUND With the continuous development and progress of medical technology,the position of surgical nursing in the field of clinical medicine is becoming in-creasingly prominent.As an important branch of the surgical field,the nursing requirements and difficulty of gastrointestinal surgery are also increasing.In order to improve the teaching quality of nursing care in gastrointestinal surgery,many educators and researchers are actively exploring new teaching methods.Among them,the teaching method case-based learning(CBL),scene-simulated learning(SSL),task-based learning(TBL),combining self-evaluation and training mode is considered as an effective method.This method aims to help students to better master knowledge and skills and improve their comprehensive quality by cultivating their self-evaluation ability.AIM To explore the practical effect of CBL-SSL-TBL combined with training mode and student self-assessment in nursing teaching of gastrointestinal surgery.METHODS Seventy-one nursing interns in our hospital from December 2020 to December 2021 were selected.According to different teaching modes,they were divided into observation group CBL-SSL-TBL combined with training mode combined with student self-assessment and control group(conventional teaching mode),of which 36 were in observation group and 35 were in control group.The results of operational skills,theoretical knowledge,nursing students'satisfaction,learning effectiveness questionnaire and teaching effect were compared between the two groups.RESULTS Compared between the two groups,the operational skills and theoretical knowledge scores of the observation group were higher than those of the control group,and the difference was statistically significant(P<0.05).Compared between the two groups,the total satisfaction ratio of the observation group was higher than that of the control group,the difference was statistically significant(P<0.05).Compared between the two groups,the observation group was lower than the control group in the questionnaire results of learning efficacy,and the difference was statistically significant(P<0.05).Compared between the two groups,the proportion of thinking ability,subjective initiative and understanding of theoretical knowledge in the observation group was higher than that in the control group,the difference was statistically significant(P<0.05).CONCLUSION The use of CBL-SSL-TBL combined with training mode and student self-assessment in gastrointestinal surgery nursing teaching can improve the operational skills of nursing interns,theoretical knowledge and satisfaction scores of nursing students,improve the results of learning efficiency questionnaire and teaching effect,which can be popularized in clinical teaching.
基金This work is supported by the Provincial Key Science and Technology Special Project of Henan(No.221100240100)。
文摘In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.
基金in part by National Undergraduate Innovation and Entrepreneurship Training Program under Grant No.202310347039Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ22F020002Huzhou Science and Technology Planning Foundation under Grant No.2023GZ04.
文摘The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.