The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is ...Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging.Herein,we present a facile ion exchange and phosphating processes to transform intestine-like CoNiP_(x)@P,N-C into lotus pod-like CoNiFeP_(x)@P,N-C heterostructure in which numerous P,N-codoped carboncoated CoNiFeP_(x)nanoparticles tightly anchors on the 2D carbon matrix.Meanwhile,the as-prepared CoNiFeP_(x)@P,N-C enables a core-shell structure,high specific surface area,and hierarchical pore structure,which present abundant heterointerfaces and fully exposed active sites.Notably,the incorporation of Fe can also induce electron transfer in CoNiP_(x)@P,IM-C,thereby promoting the oxygen evolution reaction.Consequently,CoNiFeP_(x)@P,IM-C delivers a low overpotential of 278 mV(vs RHE)at a current density of10 mA cm^(-1)and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test.This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces.展开更多
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h...In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.展开更多
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu...As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency.展开更多
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified...Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.展开更多
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ...Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.展开更多
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co...A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers.展开更多
Objective This study aimed to noninvasively characterize the metabolic alterations in ischemic brain tissues using Z-spectrum-fitted multiparametric chemical exchange saturation transfer-weighted magnetic resonance im...Objective This study aimed to noninvasively characterize the metabolic alterations in ischemic brain tissues using Z-spectrum-fitted multiparametric chemical exchange saturation transfer-weighted magnetic resonance imaging(CEST-MRI).Methods Three sets of Z-spectrum data with saturation power(B_(1))values of 1.5,2.5,and 3.5µT,respectively,were acquired from 17 patients with ischemic stroke.Multiple contrasts contributing to the Z-spectrum,including fitted amide proton transfer(APT_(fitted)),+2 ppm peak(CEST@2ppm),concomitantly fitted APT_(fitted) and CEST@2ppm(APT&CEST@2ppm),semisolid magnetization transfer contrast(MT),aliphatic nuclear Overhauser effect(NOE),and direct saturation of water(DSW),were fitted with 4 and 5 Lorentzian functions,respectively.The CEST metrics were compared between ischemic lesions and contralateral normal white matter(CNWM),and the correlation between the CEST metrics and the apparent diffusion coefficient(ADC)was assessed.The differences in the Z-spectrum metrics under varied B1 values were also investigated.Results Ischemic lesions showed increased APTfitted,CEST@2ppm,APT&CEST@2ppm,NOE,and DSW as well as decreased MT.APT&CEST@2ppm,MT,and DSW showed a significant correlation with ADC[APT&CEST@2ppm at the 3 B_(1) values:R=0.584/0.467/0.551;MT at the 3 B_(1) values:R=−0.717/−0.695/−0.762(4-parameter fitting),R=−0.734/−0.711/−0.785(5-parameter fitting);DSW of 4-/5-parameter fitting:R=0.794/0.811(2.5µT),R=0.800/0.790(3.5µT)].However,the asymmetric analysis of amide proton transfer(APT_(asym))could not differentiate the lesions from CNWM and showed no correlation with ADC.Furthermore,the Z-spectrum contrasts varied with B_(1).Conclusion The Z-spectrum-fitted multiparametric CEST-MRI can comprehensively detect metabolic alterations in ischemic brain tissues.展开更多
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do...A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.展开更多
Objective This study aims to explore the clinical applicability and relevance of giycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) for intervertebral disc. Methods 25 subjects ranging in age from 24 ...Objective This study aims to explore the clinical applicability and relevance of giycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) for intervertebral disc. Methods 25 subjects ranging in age from 24 yrs to 74 yrs were enrolled, gagCEST was acquired using a single-slice TSE sequence on a 3T. Saturation used a continuous rectangular RF pulse with B1=0.8 I^T and a fixed duration time =1100 ms. Sagittal image was obtained firstly without saturation pulse, and then saturated images were acquired at 52 offsets ranging from +0.i25 to +_7 parts per million (ppm). MR T2 relaxivity map was acquired at the identical location. Six subjects were scanned twice to assess scan-rescan reproducibility. Results GagCEST intraclass correlation coefficient (ICC) of six subjects was 0.759 for nucleus pulposus (NP) and 0.508 for annulus fibrosus (AF). Bland-Altman plots showed NP had a mean difference of 0.10% (95% limits of agreement: -3.02% to 3.22%); while that of AF was 0.34% (95% limits of agreement: -2.28% to 2.95%). For the 25 subjects, gag CEST in NP decreased as disc degeneration increased, with a similar trend to T2 relaxivity. Gag CEST of AF showed a better correlation with disc degeneration than T2 relaxivity. Conclusion GagCEST in NP and AF decreased as disc degeneration increased, while gagCEST in AF showed a better correlation than T2 relaxivity.展开更多
Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined b...Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined by coking condition of the transfer line exchangers (TLE) when naphtha or other heavy hydrocarbon feedstocks are cracked. In practice, it is difficult to measure the coke thickness in TLE through experimental method in the complex industrial situation. However, the outlet temperature of TLE (TLEOT) can indirectly characterize the coking situation in TLE since the coke accumulation in TLE has great influence on TLEOT. Thus, the TLEOT could be a critical factor in deciding when to shut down the furnace to decoke. To predict the TLEOT, a paramewic model was proposed in this work, based on theoretical analysis, mathematic reduction, and parameters estimation. The feasibility of the proposed model was further checked through industrial data and good agreements between model prediction and industrial data with maximum deviation 2% were observed.展开更多
A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat ...A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat and mass transfer at local moving force of the processes in each cell. The total process is presented as two parallel chains of cells (one for water flow and one for gas flow). The corresponding cells of the chains can exchange heat and mass, and water and gas can travel along their chains according to their transition ma-trices. The results of numerical experiments showed that the most part of heat transfer occurs due to moisture condensation from gas and the most intense heat transfer goes near the inlet of gas. Experimental validation of the model showed a good correlation between calculated and experimental data for an industrial contact heat exchanger if appropriate empirical equations were used to calculate heat and mass transfer coefficient. It was also shown that there exists the optimum height of heat exchanger that gave the maximum gain in heat energy utilization.展开更多
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then...The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.展开更多
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t...A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.展开更多
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra...Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.展开更多
As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the fal...As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.展开更多
The objective of this research is to examine impacts of exchange rate volatility and FDI on efficiency of the Vietnamese agricultural sector at the provincial level for the period 1998-2011. Due to the characteristic ...The objective of this research is to examine impacts of exchange rate volatility and FDI on efficiency of the Vietnamese agricultural sector at the provincial level for the period 1998-2011. Due to the characteristic of high uncertainty in agricultural production, the chance-constrained programming model would be used to estimate efficiency of the agricultural production sector. In order to study impacts of exchange rate volatility and FDI, we employ the two-stage model. In the first stage, we use the chance-constrained programming model to measure technical efficiency and ARIMA model to quantify exchange rate volatility. In the second stage, we use the fixed effect model to evaluate impacts of exchange rate volatility and FDI on efficiency of agricultural production in poor and rich provinces. The estimated results show that fluctuation in exchange rate volatility would reduce efficiency in agricultural production but FDI has an insignificant impact on the efficient production in Vietnam agricultural sector.展开更多
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e...The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.展开更多
This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea...This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.展开更多
On the basis of document research,we summed up factors of technical demand of commercial paddy farmers to four aspects:individual characteristics of farmers,natural endowment of resources,factors related to risks,and ...On the basis of document research,we summed up factors of technical demand of commercial paddy farmers to four aspects:individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factor.Then,we put forward relevant hypotheses.From survey results of 241 farmer households in 4 southwestern provinces(regions),by the binary logistic regression analysis method,we empirically studied influences of the above four factors on technical demand of commercial paddy farmers.Results show that commercial paddy farmers like simple and high yield cultivation technique best,while individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factors are major factors influencing different agricultural technical demand of commercial paddy farmers.展开更多
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金supported by the National Natural Science Foundation of China(No.22269010)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+3 种基金the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(No.20212BCJ23020)the Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ211305)the Jingdezhen Science and Technology Planning Project(No.20212GYZD009-04)the Graduate Innovation Fund of Jiangxi Province(YC2022-s880)
文摘Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging.Herein,we present a facile ion exchange and phosphating processes to transform intestine-like CoNiP_(x)@P,N-C into lotus pod-like CoNiFeP_(x)@P,N-C heterostructure in which numerous P,N-codoped carboncoated CoNiFeP_(x)nanoparticles tightly anchors on the 2D carbon matrix.Meanwhile,the as-prepared CoNiFeP_(x)@P,N-C enables a core-shell structure,high specific surface area,and hierarchical pore structure,which present abundant heterointerfaces and fully exposed active sites.Notably,the incorporation of Fe can also induce electron transfer in CoNiP_(x)@P,IM-C,thereby promoting the oxygen evolution reaction.Consequently,CoNiFeP_(x)@P,IM-C delivers a low overpotential of 278 mV(vs RHE)at a current density of10 mA cm^(-1)and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test.This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces.
文摘In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.
文摘Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.
基金The National Natural Science Foundation of China(No. 50976022)
文摘A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers.
基金supported by grants from the Guangzhou General Guidance Project of Health Science and Technology(No.20231A011013)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110737).
文摘Objective This study aimed to noninvasively characterize the metabolic alterations in ischemic brain tissues using Z-spectrum-fitted multiparametric chemical exchange saturation transfer-weighted magnetic resonance imaging(CEST-MRI).Methods Three sets of Z-spectrum data with saturation power(B_(1))values of 1.5,2.5,and 3.5µT,respectively,were acquired from 17 patients with ischemic stroke.Multiple contrasts contributing to the Z-spectrum,including fitted amide proton transfer(APT_(fitted)),+2 ppm peak(CEST@2ppm),concomitantly fitted APT_(fitted) and CEST@2ppm(APT&CEST@2ppm),semisolid magnetization transfer contrast(MT),aliphatic nuclear Overhauser effect(NOE),and direct saturation of water(DSW),were fitted with 4 and 5 Lorentzian functions,respectively.The CEST metrics were compared between ischemic lesions and contralateral normal white matter(CNWM),and the correlation between the CEST metrics and the apparent diffusion coefficient(ADC)was assessed.The differences in the Z-spectrum metrics under varied B1 values were also investigated.Results Ischemic lesions showed increased APTfitted,CEST@2ppm,APT&CEST@2ppm,NOE,and DSW as well as decreased MT.APT&CEST@2ppm,MT,and DSW showed a significant correlation with ADC[APT&CEST@2ppm at the 3 B_(1) values:R=0.584/0.467/0.551;MT at the 3 B_(1) values:R=−0.717/−0.695/−0.762(4-parameter fitting),R=−0.734/−0.711/−0.785(5-parameter fitting);DSW of 4-/5-parameter fitting:R=0.794/0.811(2.5µT),R=0.800/0.790(3.5µT)].However,the asymmetric analysis of amide proton transfer(APT_(asym))could not differentiate the lesions from CNWM and showed no correlation with ADC.Furthermore,the Z-spectrum contrasts varied with B_(1).Conclusion The Z-spectrum-fitted multiparametric CEST-MRI can comprehensively detect metabolic alterations in ischemic brain tissues.
基金National Natural Science Foundation of China (21878102)
文摘A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.
基金partially by grants from the Research Grants Council of the Hong Kong SAR,China(Project No.SEG_CUHK02)
文摘Objective This study aims to explore the clinical applicability and relevance of giycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) for intervertebral disc. Methods 25 subjects ranging in age from 24 yrs to 74 yrs were enrolled, gagCEST was acquired using a single-slice TSE sequence on a 3T. Saturation used a continuous rectangular RF pulse with B1=0.8 I^T and a fixed duration time =1100 ms. Sagittal image was obtained firstly without saturation pulse, and then saturated images were acquired at 52 offsets ranging from +0.i25 to +_7 parts per million (ppm). MR T2 relaxivity map was acquired at the identical location. Six subjects were scanned twice to assess scan-rescan reproducibility. Results GagCEST intraclass correlation coefficient (ICC) of six subjects was 0.759 for nucleus pulposus (NP) and 0.508 for annulus fibrosus (AF). Bland-Altman plots showed NP had a mean difference of 0.10% (95% limits of agreement: -3.02% to 3.22%); while that of AF was 0.34% (95% limits of agreement: -2.28% to 2.95%). For the 25 subjects, gag CEST in NP decreased as disc degeneration increased, with a similar trend to T2 relaxivity. Gag CEST of AF showed a better correlation with disc degeneration than T2 relaxivity. Conclusion GagCEST in NP and AF decreased as disc degeneration increased, while gagCEST in AF showed a better correlation than T2 relaxivity.
基金Supported by the Major State Basic Research Development Program of China (2012CB720500)the National Natural Science Foundation of China (U1162202, 21276078)+2 种基金the National Science Fund for Outstanding Young Scholars (61222303)the Shanghai Key Technologies R&D Program (12dz1125100)the Shanghai Leading Academic Discipline Project (B504)
文摘Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined by coking condition of the transfer line exchangers (TLE) when naphtha or other heavy hydrocarbon feedstocks are cracked. In practice, it is difficult to measure the coke thickness in TLE through experimental method in the complex industrial situation. However, the outlet temperature of TLE (TLEOT) can indirectly characterize the coking situation in TLE since the coke accumulation in TLE has great influence on TLEOT. Thus, the TLEOT could be a critical factor in deciding when to shut down the furnace to decoke. To predict the TLEOT, a paramewic model was proposed in this work, based on theoretical analysis, mathematic reduction, and parameters estimation. The feasibility of the proposed model was further checked through industrial data and good agreements between model prediction and industrial data with maximum deviation 2% were observed.
文摘A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat and mass transfer at local moving force of the processes in each cell. The total process is presented as two parallel chains of cells (one for water flow and one for gas flow). The corresponding cells of the chains can exchange heat and mass, and water and gas can travel along their chains according to their transition ma-trices. The results of numerical experiments showed that the most part of heat transfer occurs due to moisture condensation from gas and the most intense heat transfer goes near the inlet of gas. Experimental validation of the model showed a good correlation between calculated and experimental data for an industrial contact heat exchanger if appropriate empirical equations were used to calculate heat and mass transfer coefficient. It was also shown that there exists the optimum height of heat exchanger that gave the maximum gain in heat energy utilization.
文摘The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.
基金Supported by National Basic Research Program of China("973"Program,No.2011CB707203)
文摘A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.
文摘Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.
基金supported by the National Natural Science Foundation of China(U21B2085)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+2 种基金the China Postdoctoral Science Foundation(2021M703587)the Qingdao Postdoctoral Applied Research Project(qdyy20200096)Fundamental Research Funds for the Central Universities(20CX06076A)
文摘As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.
文摘The objective of this research is to examine impacts of exchange rate volatility and FDI on efficiency of the Vietnamese agricultural sector at the provincial level for the period 1998-2011. Due to the characteristic of high uncertainty in agricultural production, the chance-constrained programming model would be used to estimate efficiency of the agricultural production sector. In order to study impacts of exchange rate volatility and FDI, we employ the two-stage model. In the first stage, we use the chance-constrained programming model to measure technical efficiency and ARIMA model to quantify exchange rate volatility. In the second stage, we use the fixed effect model to evaluate impacts of exchange rate volatility and FDI on efficiency of agricultural production in poor and rich provinces. The estimated results show that fluctuation in exchange rate volatility would reduce efficiency in agricultural production but FDI has an insignificant impact on the efficient production in Vietnam agricultural sector.
文摘The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.
基金financially supported by the Science&Technology Project of Beijing Education Committee(KM202210005013)National Natural Science Foundation of China(52306180)。
文摘This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.
基金Key National Special GM Project (2011ZX08001001) Industrial Technical System Project for National Modern Agriculture of Rice (4011-08110207) Bill & Melinda Gates Foundation
文摘On the basis of document research,we summed up factors of technical demand of commercial paddy farmers to four aspects:individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factor.Then,we put forward relevant hypotheses.From survey results of 241 farmer households in 4 southwestern provinces(regions),by the binary logistic regression analysis method,we empirically studied influences of the above four factors on technical demand of commercial paddy farmers.Results show that commercial paddy farmers like simple and high yield cultivation technique best,while individual characteristics of farmers,natural endowment of resources,factors related to risks,and information factors are major factors influencing different agricultural technical demand of commercial paddy farmers.