NFT(Nutrient Film Technique)栽培模式是叶菜类作物工厂化的常用技术手段,其可大大提高作物的产量与品质,但定植期间仍需大量人工,效率低。基于奶油生菜的生长趋势线,设计一种自动递进变距机构,通过MATLAB分析,解出该机构最优空间分布...NFT(Nutrient Film Technique)栽培模式是叶菜类作物工厂化的常用技术手段,其可大大提高作物的产量与品质,但定植期间仍需大量人工,效率低。基于奶油生菜的生长趋势线,设计一种自动递进变距机构,通过MATLAB分析,解出该机构最优空间分布间距,并利用SolidWorks对设计机构进行力学分析,确保机构强度符合工程要求。通过机构使栽培槽根据作物生长自动调整间距,减轻工人劳动负担,提高工厂苗床的空间利用率,实现增收。台架试验结果表明:该机构可完成栽培槽的自动递进与变距需求,使作物可实现自动化运输作业,递进间距准确率可达96.4%以上,与传统固定间距栽培槽模式相比,空间利用率可提高14.2%。展开更多
The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimi...The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.展开更多
文摘NFT(Nutrient Film Technique)栽培模式是叶菜类作物工厂化的常用技术手段,其可大大提高作物的产量与品质,但定植期间仍需大量人工,效率低。基于奶油生菜的生长趋势线,设计一种自动递进变距机构,通过MATLAB分析,解出该机构最优空间分布间距,并利用SolidWorks对设计机构进行力学分析,确保机构强度符合工程要求。通过机构使栽培槽根据作物生长自动调整间距,减轻工人劳动负担,提高工厂苗床的空间利用率,实现增收。台架试验结果表明:该机构可完成栽培槽的自动递进与变距需求,使作物可实现自动化运输作业,递进间距准确率可达96.4%以上,与传统固定间距栽培槽模式相比,空间利用率可提高14.2%。
文摘The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.