期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Extrapolated Parallel Subgradient Projection Algorithm with Centering Technique for the Convex Feasibility Problem 被引量:1
1
作者 DANG Ya-zheng HAN Xue-feng GAO Yan 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第1期22-29,共8页
In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techn... In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms. 展开更多
关键词 convex feasibility problem SUBGRADIENT centering technique product space CONVERGENCE
下载PDF
Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China 被引量:11
2
作者 JIANG Shanhu REN Liliang +3 位作者 YONG Bin HONG Yang YANG Xiaoli YUAN Fei 《Chinese Geographical Science》 SCIE CSCD 2016年第4期439-455,共17页
The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMO... The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) are two important multi-satellite precipitation products in TRMM-era and perform important functions in GPM-era. Both TMPA and CMORPH systems simultaneously upgraded their retrieval algorithms and released their latest version of precipitation data in 2013. In this study, the latest TMPA and CMORPH products (i.e., Version-7 real-time TMPA (T-rt) and gauge-adjusted TMPA (T-adj), and Version- 1.0 real-time CMORPH (C-rt) and Version-l.0 gauge-adjusted CMORPH (C-adj)) are evaluated and intercompared by using independent rain gauge observations for a 12-year (2000--2011) period over two typical basins in China with different geographical and climate conditions. Results indicate that all TMPA and CMORPH products tend to overestimate precipitation for the high-latitude semiarid Laoha River Basin and underestimate it for the low-latitude humid Mishui Basin. Overall, the satellite precipitation products exhibit superior performance over Mishui Basin than that over Laoha River Basin. The C-adj presents the best performance over the high-latitude Laoha River Basin, whereas T-adj showed the best performance over the low-latitude Mishui Basin. The two gauge-adjusted products demonstrate potential in water resource management. However, the accuracy of two real-time satellite precipitation products demonstrates large variability in the two validation basins. The C-rt reaches a similar accuracy level with the gauge-adjusted satellite precipitation products in the high-latitude Laoha River Basin, and T-rt performs well in the low-latitude Mishui Basin. The study also reveals that all satellite precipitation products obviously overestimate light rain amounts and events over Laoha River Basin, whereas they underestimate the amount and events over Mishui Basin. The findings of the precision characteristics associated with the latest TMPA and CMORPH precipitation products at different basins will offer satellite pre- cipitation users an enhanced understanding of the applicability of the latest TMPA and CMORPH for water resource management, hydrologic process simulation, and hydrometeorological disaster prediction in other similar regions in China. The findings will also be useful for IMERG algorithm development and update in GPM-era. 展开更多
关键词 satellite precipitation Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Cli-mate Prediction center morphing technique (CMORPH) precision evaluation
下载PDF
Assessing 10 Satellite Precipitation Products in Capturing the July 2021 Extreme Heavy Rain in Henan, China 被引量:2
3
作者 Songnan LIU Jun WANG Huijun WANG 《Journal of Meteorological Research》 SCIE CSCD 2022年第5期798-808,共11页
On 20 July 2021,a sudden rainstorm happened in central and northern Henan Province,China,killing at least 302people.This extreme precipitation event incurred substantial socioeconomic impacts and resulted in serious l... On 20 July 2021,a sudden rainstorm happened in central and northern Henan Province,China,killing at least 302people.This extreme precipitation event incurred substantial socioeconomic impacts and resulted in serious losses.Accurate monitoring of such rainstorm events is crucial.In this study,qualitative and quantitative methods are used to comprehensively evaluate the abilities of 10 high-resolution satellite precipitation products[CMORPH-Raw(Climate Prediction Center morphing technique),CMORPH-RT,PERSIANN-CCS(Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks),GPM IMERG-Early(Integrated Multisatellite Retrievals for Global Precipitation Measurement),GPM IMERG-Late,GSMaP-Now(Global Satellite Mapping of Precipitation),GSMaP-NRT,FY-2F,FY-2G,and FY-2H]in capturing this extreme rainstorm event,as well as their performances in monitoring different precipitation intensities.The results show that these satellite precipitation products are able to capture the spatial distributions of the rainstorm(e.g.,its location in central and northern Henan),but all products have underestimated the amount of precipitation in the rainstorm center.With the increase in precipitation intensity,the hit rate decreases,the threat score decreases,and the false alarm rate increases.CMORPH-RT is better at capturing the rainstorm than CMORPH-Raw,and it depictes the rainstorm process well;GPM IMERG-Late is more accurate than GPM IMERG-Early;GSMaP-NRT has performed better than GSMaP-Now;and PERSIANNCCS and FY-2F perform poorly.Among the products,CMORPH-RT performs the best,which has accurately captured the center of the rainstorm,and is also the closest to the station-based observations.In general,the satellite precipitation products that integrate infrared and passive microwave data are found to be better than those that only make use of infrared data.The satellite precipitation retrieval algorithm and the amount of passive microwave data have a relatively greater impact on the accuracy of satellite precipitation products. 展开更多
关键词 heavy rain CMORPH(Climate Prediction center morphing technique) FY(Fengyun) GPM(Global Precipitation Measurement)
原文传递
Applicability Assessment of the 1998–2018 CLDAS Multi-Source Precipitation Fusion Dataset over China 被引量:13
4
作者 Shuai SUN Chunxiang SHI +5 位作者 Yang PAN Lei BAI Bin XU Tao ZHANG Shuai HAN Lipeng JIANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期879-892,共14页
Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to ... Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to retrieve solid precipitation. In addition, there are no long-term, high-quality precipitation data in China that can be used to drive land surface models. To address these issues, in the China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS), we blended the Climate Prediction Center(CPC) morphing technique(CMORPH) and Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) precipitation datasets with observed temperature and precipitation data on various temporal scales using multigrid variational analysis and temporal downscaling to produce a multi-source precipitation fusion dataset for China(CLDAS-Prcp). This dataset covers all of China at a resolution of 6.25 km at hourly intervals from 1998 to 2018. We performed dependent and independent evaluations of the CLDAS-Prcp dataset from the perspectives of seasonal total precipitation and land surface model simulation. Our results show that the CLDAS-Prcp dataset represents reasonably the spatial distribution of precipitation in China. The dependent evaluation indicates that the CLDAS-Prcp performs better than the MERRA2 precipitation, CMORPH precipitation, Global Land Data Assimilation System version 2(GLDAS-V2.1) precipitation,and CLDAS-V2.0 winter precipitation, as compared to the meteorological observational precipitation. The independent evaluation indicates that the CLDAS-Prcp dataset performs better than the Global Precipitation Measurement(GPM) precipitation dataset and is similar to the CLDAS-V2.0 summer precipitation dataset based on the hydrological observational precipitation. The simulated soil moisture content driven by CLDAS-Prcp is slightly better than that driven by the CLDAS-V2.0 precipitation, whereas the snow depth simulation driven by CLDAS-Prcp is much better than that driven by the CLDAS-V2.0 precipitation. This is because the CLDAS-Prcp data have included solid precipitation. Overall, the CLDAS-Prcp dataset can meet the needs of land surface and hydrological modeling studies. 展开更多
关键词 China Meteorological Administration Land Data Assimilation System(CLDAS) PRECIPITATION data fusion Modern-Era Retrospective analysis for Research and Applications version 2(MERRA2) Climate Prediction center(CPC)morphing technique(CMORPH) Space–Time Multiscale Variational Analysis System(STMAS) Noah land surface model with multiparameterization options(Noah-MP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部