We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
A new entangled state |η 0) is proposed by the technique of integral within an ordered product. A generalized Hadamaxd transformation is derived by virtue of η; θ), which plays a role of Hadamard transformation ...A new entangled state |η 0) is proposed by the technique of integral within an ordered product. A generalized Hadamaxd transformation is derived by virtue of η; θ), which plays a role of Hadamard transformation for (a1 sinθ - a2 cosθ) and (a1 cosθ + a2 sin θ).展开更多
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574060)the Natural Science Foundation of Shandong Province of China(Grant No.Y2008A16)+1 种基金the University Experimental Technology Foundation of Shandong Province,China(Grant No.S04W138)the Natural Science Foundation of Heze University of Shandong Province,China(GrantNos.XY07WL01 and XY08WL03)
文摘A new entangled state |η 0) is proposed by the technique of integral within an ordered product. A generalized Hadamaxd transformation is derived by virtue of η; θ), which plays a role of Hadamard transformation for (a1 sinθ - a2 cosθ) and (a1 cosθ + a2 sin θ).