期刊文献+
共找到4,724篇文章
< 1 2 237 >
每页显示 20 50 100
Randomization Strategies in Image Steganography Techniques:A Review
1
作者 AFM Zainul Abadin Rossilawati Sulaiman Mohammad Kamrul Hasan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3139-3171,共33页
Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into ... Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography. 展开更多
关键词 Information hiding image steganography randomized embedding techniques payload capacity IMPERCEPTIBILITY
下载PDF
Research on Image Recognition Using Deep Learning Techniques
2
作者 Shuntao Tang Wei Chen 《控制工程期刊(中英文版)》 2024年第1期1-5,共5页
This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Ne... This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development. 展开更多
关键词 Deep Learning techniques image Recognition Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks
下载PDF
A Galaxy Image Augmentation Method Based on Few-shot Learning and Generative Adversarial Networks
3
作者 Yiqi Yao Jinqu Zhang +1 位作者 Ping Du Shuyu Dong 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期180-193,共14页
Galaxy morphology classifications based on machine learning are a typical technique to handle enormous amounts of astronomical observation data,but the key challenge is how to provide enough training data for the mach... Galaxy morphology classifications based on machine learning are a typical technique to handle enormous amounts of astronomical observation data,but the key challenge is how to provide enough training data for the machine learning models.Therefore this article proposes an image data augmentation method that combines few-shot learning and generative adversarial networks.The Galaxy10 DECaLs data set is selected for the experiments with consistency,variance,and augmentation effects being evaluated.Three popular networks,including AlexNet,VGG,and ResNet,are used as examples to study the effectiveness of different augmentation methods on galaxy morphology classifications.Experiment results show that the proposed method can generate galaxy images and can be used for expanding the classification model’s training set.According to comparative studies,the best enhancement effect on model performance is obtained by generating a data set that is 0.5–1 time larger than the original data set.Meanwhile,different augmentation strategies have considerably varied effects on different types of galaxies.FSL-GAN achieved the best classification performance on the ResNet network for In-between Round Smooth Galaxies and Unbarred Loose Spiral Galaxies,with F1 Scores of 89.54%and 63.18%,respectively.Experimental comparison reveals that various data augmentation techniques have varied effects on different categories of galaxy morphology and machine learning models.Finally,the best augmentation strategies for each galaxy category are suggested. 展开更多
关键词 techniques image processing-galaxies structure-galaxies general
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
4
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
A Preliminary Comparative Study on the Centering Algorithms for CassiniISS NAC Images
5
作者 T.Liang Q.-F.Zhang +2 位作者 G.-M.Liu W.-H.Zhu C.-S.Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期58-65,共8页
Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key ... Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images. 展开更多
关键词 methods:analytical techniques:image processing stars:imaging ASTROMETRY
下载PDF
A Review on the Recent Trends of Image Steganography for VANET Applications
6
作者 Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第3期2865-2892,共28页
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w... Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods. 展开更多
关键词 STEGANOGRAPHY image steganography image steganography techniques information exchange data embedding and extracting vehicular ad hoc network(VANET) transportation system
下载PDF
A Hybrid Cybersecurity Algorithm for Digital Image Transmission over Advanced Communication Channel Models
7
作者 Naglaa F.Soliman Fatma E.Fadl-Allah +3 位作者 Walid El-Shafai Mahmoud I.Aly Maali Alabdulhafith Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2024年第4期201-241,共41页
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ... The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels. 展开更多
关键词 Cybersecurity applications image transmission channel models modulation techniques watermarking and encryption
下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
8
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
下载PDF
Advances in the application of auxiliary imaging techniques in parathyroid diseases
9
作者 Lei Lu Hong-Qing Shang 《World Journal of Clinical Cases》 SCIE 2024年第17期2946-2950,共5页
Hypoparathyroidism is one of the main complications after total thyroidectomy,severely affecting patients’quality of life.How to effectively protect parathyroid function after surgery and reduce the incidence of hypo... Hypoparathyroidism is one of the main complications after total thyroidectomy,severely affecting patients’quality of life.How to effectively protect parathyroid function after surgery and reduce the incidence of hypoparathyroidism has always been a key research area in thyroid surgery.Therefore,precise localization of parathyroid glands during surgery,effective imaging,and accurate surgical resection have become hot topics of concern for thyroid surgeons.In response to this clinical phenomenon,this study compared several different imaging methods for parathyroid surgery,including nanocarbon,indocyanine green,near-infrared imaging techniques,and technetium-99m methoxyisobutylisonitrile combined with gamma probe imaging technology.The advantages and disadvantages of each method were analyzed,providing scientific recommendations for future parathyroid imaging.In recent years,some related basic and clinical research has also been conducted in thyroid surgery.This article reviewed relevant literature and provided an overview of the practical application progress of various imaging techniques in parathyroid surgery. 展开更多
关键词 Imaging technique Parathyroid gland Thyroid surgery HYPOPARATHYROIDISM COMPLICATION
下载PDF
Lossless Compression Method for the Magnetic and Helioseismic Imager(MHI)Payload
10
作者 Li-Yue Tong Jia-Ben Lin +4 位作者 Yuan-Yong Deng Kai-Fan Ji Jun-Feng Hou Quan Wang Xiao Yang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期214-221,共8页
The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e... The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI. 展开更多
关键词 methods:data analysis techniques:image processing Sun:magnetic fields Sun:photosphere
下载PDF
基于SAM&ImageJ图像处理的堆石混凝土坝层面露石率研究
11
作者 安宇 徐小蓉 +2 位作者 尹志刚 金峰 张喜喜 《水资源与水工程学报》 CSCD 北大核心 2024年第1期154-161,共8页
堆石混凝土坝层面的外露块石为上下层提供了重要的啮合作用,其投影面积比例是科学评价层间抗剪性能的重要指标。采用国际最新Meta AI模型segment anything model(SAM)对层面外露堆石进行自动图像分割,并基于ImageJ软件对SAM识别后的图... 堆石混凝土坝层面的外露块石为上下层提供了重要的啮合作用,其投影面积比例是科学评价层间抗剪性能的重要指标。采用国际最新Meta AI模型segment anything model(SAM)对层面外露堆石进行自动图像分割,并基于ImageJ软件对SAM识别后的图片进行再加工与图像计算,利用平滑、差分算法、中值滤波等方法精准标定外露堆石,二值化后计算得到层面露石率。结果表明:SAM图像预分割可识别约90%的外露堆石,经过ImageJ二次图像处理后可有效提高小粒径堆石的识别精度,对比手动标注结果误差在±3%以内。以贵州省两座水库的工程应用为例,对浇筑仓面进行分区预处理,结果发现靠近上游、中部、下游不同区域的露石率差别较大,计算得到的层面露石率以10%~30%居多,其中堆石入仓运输通道区域的露石率较低。研究内容与结论可为堆石混凝土结构层间界面抗剪力学性能和大坝蓄水安全稳定的研究提供参考与借鉴。 展开更多
关键词 堆石混凝土坝 segment anything model(SAM) 图像处理技术 露石率 层间抗剪性能
下载PDF
How to Coadd Images.Ⅱ.Anti-aliasing and PSF Deconvolution
12
作者 Lei Wang Huanyuan Shan +8 位作者 Lin Nie Dezi Liu Zhaojun Yan Guoliang Li Cheng Cheng Yushan Xie Han Qu Wenwen Zheng Xi Kang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期103-113,共11页
We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing ... We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches. 展开更多
关键词 methods:analytical techniques:image processing gravitational lensing:weak (ISM:)cosmic rays
下载PDF
A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts
13
作者 Zia Ullah Lin Qi +2 位作者 E.J.Solteiro Pires Arsénio Reis Ricardo Rodrigues Nunes 《Computers, Materials & Continua》 SCIE EI 2024年第8期2387-2421,共35页
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear... The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration. 展开更多
关键词 Computer vision end-of-line visual inspection of antenna parts machine learning algorithms image processing techniques deep learning models
下载PDF
Recent advances in optical techniques for dynamically probing cellular mechanobiology
14
作者 Fengqi Wang Qin Zhang +2 位作者 Mo Yang Bohan Yin Siu Hong Dexter Wong 《Biomedical Engineering Communications》 2024年第3期3-11,共9页
Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This proces... Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This process is integral to diverse biological phenomena,including embryonic development,cell migration,tissue regeneration,and disease pathology,particularly in the context of cancer metastasis and cardiovascular diseases.Despite the profound biological and clinical significance of mechanotransduction,our understanding of this complex process remains incomplete.The recent development of advanced optical techniques enables in-situ force measurement and subcellular manipulation from the outer cell membrane to the organelles inside a cell.In this review,we delved into the current state-of-the-art techniques utilized to probe cellular mechanobiology,their principles,applications,and limitations.We mainly examined optical methodologies to quantitatively measure the mechanical properties of cells during intracellular transport,cell adhesion,and migration.We provided an introductory overview of various conventional and optical-based techniques for probing cellular mechanics.These techniques have provided into the dynamics of mechanobiology,their potential to unravel mechanistic intricacies and implications for therapeutic intervention. 展开更多
关键词 MECHANOBIOLOGY cell adhesion optical techniques live cell imaging cell fates
下载PDF
Comparison of four techniques for estimating temporal change of seismic velocity with passive image interferometry 被引量:6
15
作者 Zhikun Liu Jinli Huang Jiaojiao Li 《Earthquake Science》 CSCD 2010年第5期511-518,共8页
Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of ... Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of seismic ambient noise. There are four techniques for estimating temporal change of seismic velocity with PII: moving-window cross-correlation technique (MWCCT), moving-window cross-spectrum technique (MWCST), stretching technique (ST) and moving-window stretching technique (MWST). In this paper, we use the continuous seismic records from a typical station pair near the Wenchuan Ms8.0 earthquake fault zone and generate three sets of waveforms by stacking cross-correlation function of ambient noise with different numbers of days, and then apply four techniques to processing the three sets of waveforms and compare their results. Our results indicate that the techniques based on moving-window (MWCCT, MWCST and MWST) are superior in detecting the change of seismic velocity, and the MWCST can give a better estimate of velocity change than the other moving-window techniques due to measurement error. We also investigate the clock errors and their influences on measuring velocity change. We find that when the clock errors are not very large, they have limited impact on the estimate of the velocity change with the moving-window techniques. 展开更多
关键词 passive image interferometry seismic ambient noise temporal variation moving-window cross-spectrum technique stretching technique
下载PDF
The State-of-the-Art Review on Applications of Intrusive Sensing,Image Processing Techniques,and Machine Learning Methods in Pavement Monitoring and Analysis 被引量:14
16
作者 Yue Hou Qiuhan Li +5 位作者 Chen Zhang Guoyang Lu Zhoujing Ye Yihan Chen Linbing Wang Dandan Cao 《Engineering》 SCIE EI 2021年第6期845-856,共12页
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a... In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches. 展开更多
关键词 Pavement monitoring and analysis The state-of-the-art review Intrusive sensing image processing techniques Machine learning methods
下载PDF
A Survey on Digital Image Copy-Move Forgery Localization Using Passive Techniques 被引量:1
17
作者 Weijin Tan Yunqing Wu +1 位作者 Peng Wu Beijing Chen 《Journal of New Media》 2019年第1期11-25,共15页
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo... Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed. 展开更多
关键词 image forgery copy-move forgery localization passive techniques
下载PDF
Non-invasive evaluation of liver steatosis with imaging modalities:New techniques and applications 被引量:3
18
作者 Ke-Yu Zeng Wu-Yong-Ga Bao +4 位作者 Yun-Han Wang Min Liao Jie Yang Jia-Yan Huang Qiang Lu 《World Journal of Gastroenterology》 SCIE CAS 2023年第17期2534-2550,共17页
In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease... In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease progression.Moreover,the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.Therefore,early detection and quantified measurement of hepatic fat content are of great importance.Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis.However,liver biopsy has several limitations,namely,its invasiveness,sampling error,high cost and moderate intraobserver and interobserver reproducibility.Recently,various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content,including ultrasound-or magnetic resonancebased methods.These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content,which is useful for longitudinal follow-up.In this review,we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content. 展开更多
关键词 Non-alcoholic fatty liver disease Hepatic steatosis Imaging techniques Quantitative evaluation ULTRASOUND Quantitative ultrasound
下载PDF
Mapping the Dyke Swarms Emplaced within the Different Archean Cratons of the Indian Shield Using Google^(TM) Earth Images and Arc GIS^(TM) Techniques
19
作者 Rajesh K.SRIVASTAVA Amiya K.SAMAL Richard E.ERNST 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期64-65,共2页
The Indian shield comprises a number of Archean–Paleoproterozoic cratonic blocks and predominantly Meso–Neoproterozoic mobile belts with Archean protoliths.All these ancient cratons were thought to be integral parts of
关键词 Earth images and Arc GIS Mapping the Dyke Swarms Emplaced within the Different Archean Cratons of the Indian Shield Using Google techniques Arc TM
下载PDF
Attention-Based Deep Learning Model for Image Desaturation of SDO/AIA
20
作者 Xinze Zhang Long Xu +2 位作者 Zhixiang Ren Xuexin Yu Jia Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第8期92-102,共11页
The Atmospheric Imaging Assembly(AIA)onboard the Solar Dynamics Observatory(SDO)captures full-disk solar images in seven extreme ultraviolet wave bands.As a violent solar flare occurs,incoming photoflux may exceed the... The Atmospheric Imaging Assembly(AIA)onboard the Solar Dynamics Observatory(SDO)captures full-disk solar images in seven extreme ultraviolet wave bands.As a violent solar flare occurs,incoming photoflux may exceed the threshold of an optical imaging system,resulting in regional saturation/overexposure of images.Fortunately,the lost signal can be partially retrieved from non-local unsaturated regions of an image according to scattering and diffraction principle,which is well consistent with the attention mechanism in deep learning.Thus,an attention augmented convolutional neural network(AANet)is proposed to perform image desaturation of SDO/AIA in this paper.It is built on a U-Net backbone network with partial convolution and adversarial learning.In addition,a lightweight attention model,namely criss-cross attention,is embedded between each two convolution layers to enhance the backbone network.Experimental results validate the superiority of the proposed AANet beyond state-of-the-arts from both quantitative and qualitative comparisons. 展开更多
关键词 techniques image processing-Sun atmosphere-Sun FLARES
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部