In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) sepa...The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.展开更多
Standalone Solar PV systems have been vital in the improvement of access to energy in many countries.However,given the large cost of solar PV plants’components,in developing countries,there is a dear need for such co...Standalone Solar PV systems have been vital in the improvement of access to energy in many countries.However,given the large cost of solar PV plants’components,in developing countries,there is a dear need for such components to be subsidised and incentivised for the consumers to afford the produced energy.Moreover,there is a need for optimal sizing of the solar PV plants taking into account the solar information,energy requirement for various activities,and economic conditions in the off-grid regions in Rwanda.This study aims to develop optimally sized solar PV plants suited to rural communities in Rwanda.Likewise,it aims at characterizing the impacts of subsidies and incentives on the profitability and affordability of solar PV plants’energy in Rwanda.In the study,we have developed a model on basis of which the plant power(peak power)and costs of energy can be predicted given the load requirements using PVSyst.The model was validated using data corrected at eight different sites.Our generalized predictive model’s results matched the results obtained using field measurement data as inputs.The models have been able to replicate with a by degree of accuracy the peak powers and the plants’costs for different loads and were used to evaluate the economic viability of solar PV plants in Rwanda.It was found that with incentives and subsidies of 20%,the solar PV systems’costs,the Levelised Cost of Energy would drop from a maximum of 0.098 Euro to a minimum of 0.072 Euro,the payback period was reduced from a maximum of 7.5 years to a minimum of 6.0 years while the return on investments was seen to vary between 425.72 and 615.32 per cent over the plants’lifetime of 25 years.Overall our findings underscore the importance of government subsidies and incentives for solar PV energy generation projects to be significantly profitable.展开更多
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe...Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.展开更多
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large...Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.展开更多
The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-c...The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-carbon(C_(2+)) products driven by renewable electricity has emerged as a highly promising solution to alleviate energy shortages and achieve carbon neutrality.Among these C_(2+) products,ethylene(C_(2)H_(4))holds particular importance in the petrochemical industry.Accordingly,this review aims to establish a connection between the fundamentals of electrocatalytic CO_(2) reduction reaction to ethylene(CO_(2)RRto-C_(2)H_(4)) in laboratory-scale research(lab) and its potential applications in industrial-level fabrication(fab).The review begins by summarizing the fundamental aspects,including the design strategies of high-performance Cu-based electrocatalysts and advanced electrolyzer devices.Subsequently,innovative and value-added techniques are presented to address the inherent challenges encountered during the implementations of CO_(2)RR-to-C_(2)H_(4) in industrial scenarios.Additionally,case studies of the technoeconomic analysis of the CO_(2)RR-to-C_(2)H_(4) process are discussed,taking into factors such as costeffectiveness,scalability,and market potential.The review concludes by outlining the perspectives and challenges associated with scaling up the CO_(2)RR-to-C_(2)H_(4) process.The insights presented in this review are expected to make a valuable contribution in advancing the CO_(2)RR-to-C_(2)H_(4) process from lab to fab.展开更多
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un...Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.展开更多
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ...Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.展开更多
This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW ph...This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.展开更多
On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and an...On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and analyzed. The data obtained from test could match with the result deduced from theoretical calculation. From the test results,the cooling capacity of double U-tube is 1.6 times that of single U-tube. Taking cost per depth per watt Clq as the evaluation standard,Clq of single U-tube is 4.69 RMB$/W,and Clq of double U-tube is 3.14 RMB$/W. The double U-tube heat exchangers usage should be prioritized.展开更多
The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved o...The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance.展开更多
Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed ...Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.展开更多
With the rapid depletion of fossil fuel reserves, it is feared that the world will soon run out of its energy resources. This is a matter of concern for developing countries whose economy heavily leans on its use of e...With the rapid depletion of fossil fuel reserves, it is feared that the world will soon run out of its energy resources. This is a matter of concern for developing countries whose economy heavily leans on its use of energy. Under the circums-tances it is highly desirable that renewable energy resources should be utilized with maximum conversion efficiency to cope with the ever increasing energy demand. Furthermore, the global economic and political conditions that tend to make countries more dependent on their own energy resources have caused growing interest in the development and use of renewable energy based technologies. In terms of its environmental advantages, renewable energy sources generate electricity with insignificant contribution of carbon dioxide (CO2) or other greenhouse gases (GHG) to the atmosphere and they produce no pollutant discharge on water or soil and hence power generation from renewable becomes very important. Major types of renewable energy sources include solar, wind, hydro and biomass, all of which have huge potential to meet future energy challenges. Solar photovoltaic technology in one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of electricity particularly in remote areas. In this paper literature review pertaining to techno-economic feasibility analysis of solar photovoltaic power generation is discussed. The literature is basically classified into the following three main category design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems.展开更多
Energy recovery from waste biomass can have significant impacts on the most pressing development challenges of rural poverty and environmental damages. In this paper, a techno-economic analysis is carried out for elec...Energy recovery from waste biomass can have significant impacts on the most pressing development challenges of rural poverty and environmental damages. In this paper, a techno-economic analysis is carried out for electricity generation by using timber and wood waste (T & WW) gasification in Iceland. Different expenses were considered, like capital, installation, engineering, operation and maintenance costs and the interest rate of the investment. Regarding to revenues, they come from of the electricity sale and the fee paid by the Icelandic municipalities for waste collection and disposal. The economic feasibility was conducted based on the economic indicators of net present value (NPV) and discounted payback period (DPP), bringing together three different subgroups based on gasifier capacities, subgroup a: 50 kW, subgroup b: 100 kW and subgroup c: 200 kW. The results show that total cost increases as the implemented power is increased. This indicator varies from 1228.6 k€ for subgroups a to 1334.7 k€ for subgroups b and 1479.5 k€ for subgroups c. It is worth mentioning that NPV is positive for three subgroups and it grows as gasifier scale is extended. NPV is about 122 k€ (111,020 $), 1824 k€ (1,659,840 $) and 4392 k€ (3,996,720 $) for subgroups a, b and c, respectively. Moreover, DPP has an inversely proportional to the installed capacity. It is around 5.5 years (subgroups a), 9.5 months (subgroups b) and 6 months (subgroups c). The obtained results confirm that using small scale waste biomass gasification integrated with power generation could be techno-economically feasible for remote area in Iceland.展开更多
A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of bi...A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre(CHF) membrane and compare with a commercially available polymeric membrane(polyimide) through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO_2, O_2, N_2. The CHF membrane was modified through oxidation, chemical vapour deposition(CVD) and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres(PORCHFs) significantly exceeded CHF performance showing higher CO_2 permeance(0.021 m^3(STP)/m^2 h bar) and CO_2/CH_4 selectivity of 246(5 bar feed vs 50 mbar permeate pressure). The highest performance recorded through experiments(CHF and PORCHF) was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS.A 300 Nm^3/h mixture of CO_2/CH_4 containing 30-50% CO_2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover99.5% CH_4 with 97.5% purity. Net present value(NPV) was calculated for base case and optimal pressure(50 bar for CHF and PORCHF). The results indicated that recycle ratio(recycle/feed) ranged from 0.2 to 10, specific energy from 0.15 to 0.8(kW/Nm^3 feed) and specific membrane area from 45 to 4700(m^2/Nm^3 feed). The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm^3 and a lifetime of 15 years, the technoeconomic analysis showed that payback time for the best cascade is 1.6 months.展开更多
Investigation of a triple-pressure organic Rankine cycle(TPORC) using geothermal energy for power generation with the net power output of the TPORC analyzed by varying the evaporation pressures, pinch temperature diff...Investigation of a triple-pressure organic Rankine cycle(TPORC) using geothermal energy for power generation with the net power output of the TPORC analyzed by varying the evaporation pressures, pinch temperature differences(tpp) and degrees of superheat(tsup) aimed to find the optimum operation conditions of the system. The thermodynamic performance of the TPORC was compared with a dual-pressure organic Rankine cycle(DPORC) and a single-pressure ORC(SPORC) for geofluid temperatures ranging from 100°C to 200°C, with particular reference to the utilization of a hot dry rock(HDR) geothermal resource. Thermodynamic performances of the TPORC system using eight different organic working fluids have also been investigated in terms of the net power outputs. Results show that a higher geofluid mass flow rate can make a considerable contribution to shortening the payback period(PBP) as well as to decreasing the levelized electricity cost(LEC), especially when the geofluid temperature is low. For the temperature range investigated, the order from high to low based on thermodynamic and techno-economic performances is found to be TPORC > DPORC > SPORC. In terms of using geothermal resources within the given temperatures range(100°C–200°C), the TPORC system can be a better choice for geothermal power generation so long as the wellhead geofluid temperature is between 140°C and 180°C.展开更多
With population growth around the world,municipal waste disposal and continued energy demand becomes some of the major challenges to deal with.In order to address these,an approach is required for an optimal waste man...With population growth around the world,municipal waste disposal and continued energy demand becomes some of the major challenges to deal with.In order to address these,an approach is required for an optimal waste management system that offers the population benefit with a lower environmental impact.This study evaluates the technical-economic and environmental impact analysis of a grid-connected waste to energy(WtE)plant to power a Univerisiti Teknologi Malaysia(UTM)community.The energy recovery potential of the waste stream was assessed using the life cycle assessment(LCA)method with GaBi^(TM) software(version 4).A technical,economic and environmental analysis was then carried out for the grid-connected WtE system using HOMERPro software with gasification conversion technology.The cash flow analysis was based on levelized costs of energy(LCOE)and total net present value(NPV).The results gave an NPV for the system at USD 1.11×10^(7),with most of the effects resulting from the grid operating costs and the LCOE of USD 0.43/kWh compared to the grid unit price of USD 0.7/kWh which corresponds to a saving of$0.27/kWh in energy purchase.From an environmental point of view,the results showed a significant reduction in carbon dioxide emissions from around 2,000 tons per year to around 400 tons per year.With regard to the amount of waste sent to landfills,the results show a significant improvement from 142,605.5 kg/year to 0.13 kg/year.展开更多
Techno-economic analysis of a small-scale Modified Plant Oil (MPO) production plant that has an annual production capacity of 15,072,741 kg of MPO (batch process) was carried out to estimate the capital and operating ...Techno-economic analysis of a small-scale Modified Plant Oil (MPO) production plant that has an annual production capacity of 15,072,741 kg of MPO (batch process) was carried out to estimate the capital and operating costs of a plant. The analysis was done by using a computer model that was designed and simulated with an aid of SuperPro Designer (Version 4.32) software. The specified feedstock was crude Jatropha oil (JO) and the main product was MPO. The major processes involved were degumming, neutralisation and blending. Degumming involved the removal of gums or phospholipids, and two methods were used: water degumming and acid degumming, whereas blending involved mixing of degummed or purified JO with natural gas condensate (NGC) modifier to lower the viscosity of JO. From techno-economic analysis of the process, it was found that the total capital investment of a plant was about US $ 10,222,000 and the predicted unit production cost of MPO was US $ 1.315/kg at a value of US $ 1.0/kg of JO. The economic feasibility of MPO production was found to be highly influenced by the price of feedstock, which contributed about 95% of the total annual production cost. The relationship between plant throughput and unit cost of producing MPO showed that unit production cost was very sensitive to production rate at low annual throughputs. The MPO cost showed a direct linear relationship with the cost of JO, with a change of US $ 0.50/kg of MPO in MPO cost in every change of US $ 0.50/kg of JO in JO price. The process technology simulated was found to be economically viable and can be implemented in rural setting, taking into consideration Tanzania’s rural situation.展开更多
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
基金supported by National Natural Science Foundation of China(U1810205)The authors would also like to thank the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L002)for their support.
文摘The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.
文摘Standalone Solar PV systems have been vital in the improvement of access to energy in many countries.However,given the large cost of solar PV plants’components,in developing countries,there is a dear need for such components to be subsidised and incentivised for the consumers to afford the produced energy.Moreover,there is a need for optimal sizing of the solar PV plants taking into account the solar information,energy requirement for various activities,and economic conditions in the off-grid regions in Rwanda.This study aims to develop optimally sized solar PV plants suited to rural communities in Rwanda.Likewise,it aims at characterizing the impacts of subsidies and incentives on the profitability and affordability of solar PV plants’energy in Rwanda.In the study,we have developed a model on basis of which the plant power(peak power)and costs of energy can be predicted given the load requirements using PVSyst.The model was validated using data corrected at eight different sites.Our generalized predictive model’s results matched the results obtained using field measurement data as inputs.The models have been able to replicate with a by degree of accuracy the peak powers and the plants’costs for different loads and were used to evaluate the economic viability of solar PV plants in Rwanda.It was found that with incentives and subsidies of 20%,the solar PV systems’costs,the Levelised Cost of Energy would drop from a maximum of 0.098 Euro to a minimum of 0.072 Euro,the payback period was reduced from a maximum of 7.5 years to a minimum of 6.0 years while the return on investments was seen to vary between 425.72 and 615.32 per cent over the plants’lifetime of 25 years.Overall our findings underscore the importance of government subsidies and incentives for solar PV energy generation projects to be significantly profitable.
基金supported by an Australian Government Research Training Program Scholarship offered to the first author of this study。
文摘Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
基金supporting this work and funding research through the project Enabling Large-Scale Hydrogen Underground Storage in Porous Media(21.RP2.0091)。
文摘Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
基金supported by Zhejiang Provincial Department of Science and Technology under its Provincial Key Laboratory Program(2020E10018)the financial support from Fundamental Research Funds for the Central Universities(2022LHJH01-03,2022ZFJH04,2022QZJH14)+5 种基金Pioneer R&D Program of Zhejiang Province(2022C03040)the financial aid from National Natural Science Foundation of China(22005266)Zhejiang Provincial Natural Science Foundation(LR21E020003)Fundamental Research Funds for the Central Universities(2021FZZX001-09)supported by the Royal Academy of Engineering under the Chairs in Emerging Technologies scheme(CiET2021_17)University of Nottingham Ningbo China for providing a full PhD scholarship。
文摘The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-carbon(C_(2+)) products driven by renewable electricity has emerged as a highly promising solution to alleviate energy shortages and achieve carbon neutrality.Among these C_(2+) products,ethylene(C_(2)H_(4))holds particular importance in the petrochemical industry.Accordingly,this review aims to establish a connection between the fundamentals of electrocatalytic CO_(2) reduction reaction to ethylene(CO_(2)RRto-C_(2)H_(4)) in laboratory-scale research(lab) and its potential applications in industrial-level fabrication(fab).The review begins by summarizing the fundamental aspects,including the design strategies of high-performance Cu-based electrocatalysts and advanced electrolyzer devices.Subsequently,innovative and value-added techniques are presented to address the inherent challenges encountered during the implementations of CO_(2)RR-to-C_(2)H_(4) in industrial scenarios.Additionally,case studies of the technoeconomic analysis of the CO_(2)RR-to-C_(2)H_(4) process are discussed,taking into factors such as costeffectiveness,scalability,and market potential.The review concludes by outlining the perspectives and challenges associated with scaling up the CO_(2)RR-to-C_(2)H_(4) process.The insights presented in this review are expected to make a valuable contribution in advancing the CO_(2)RR-to-C_(2)H_(4) process from lab to fab.
文摘Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.
文摘Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.
文摘This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.
文摘On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and analyzed. The data obtained from test could match with the result deduced from theoretical calculation. From the test results,the cooling capacity of double U-tube is 1.6 times that of single U-tube. Taking cost per depth per watt Clq as the evaluation standard,Clq of single U-tube is 4.69 RMB$/W,and Clq of double U-tube is 3.14 RMB$/W. The double U-tube heat exchangers usage should be prioritized.
基金The research was supported by the National Natural Science Foundation of China(21978325 and 21776312)the Fundamental Research Funds for the Central Universities(20CX06073A,20CX06095A,and 20CX06096A).
文摘The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance.
文摘Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.
文摘With the rapid depletion of fossil fuel reserves, it is feared that the world will soon run out of its energy resources. This is a matter of concern for developing countries whose economy heavily leans on its use of energy. Under the circums-tances it is highly desirable that renewable energy resources should be utilized with maximum conversion efficiency to cope with the ever increasing energy demand. Furthermore, the global economic and political conditions that tend to make countries more dependent on their own energy resources have caused growing interest in the development and use of renewable energy based technologies. In terms of its environmental advantages, renewable energy sources generate electricity with insignificant contribution of carbon dioxide (CO2) or other greenhouse gases (GHG) to the atmosphere and they produce no pollutant discharge on water or soil and hence power generation from renewable becomes very important. Major types of renewable energy sources include solar, wind, hydro and biomass, all of which have huge potential to meet future energy challenges. Solar photovoltaic technology in one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of electricity particularly in remote areas. In this paper literature review pertaining to techno-economic feasibility analysis of solar photovoltaic power generation is discussed. The literature is basically classified into the following three main category design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems.
文摘Energy recovery from waste biomass can have significant impacts on the most pressing development challenges of rural poverty and environmental damages. In this paper, a techno-economic analysis is carried out for electricity generation by using timber and wood waste (T & WW) gasification in Iceland. Different expenses were considered, like capital, installation, engineering, operation and maintenance costs and the interest rate of the investment. Regarding to revenues, they come from of the electricity sale and the fee paid by the Icelandic municipalities for waste collection and disposal. The economic feasibility was conducted based on the economic indicators of net present value (NPV) and discounted payback period (DPP), bringing together three different subgroups based on gasifier capacities, subgroup a: 50 kW, subgroup b: 100 kW and subgroup c: 200 kW. The results show that total cost increases as the implemented power is increased. This indicator varies from 1228.6 k€ for subgroups a to 1334.7 k€ for subgroups b and 1479.5 k€ for subgroups c. It is worth mentioning that NPV is positive for three subgroups and it grows as gasifier scale is extended. NPV is about 122 k€ (111,020 $), 1824 k€ (1,659,840 $) and 4392 k€ (3,996,720 $) for subgroups a, b and c, respectively. Moreover, DPP has an inversely proportional to the installed capacity. It is around 5.5 years (subgroups a), 9.5 months (subgroups b) and 6 months (subgroups c). The obtained results confirm that using small scale waste biomass gasification integrated with power generation could be techno-economically feasible for remote area in Iceland.
文摘A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre(CHF) membrane and compare with a commercially available polymeric membrane(polyimide) through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO_2, O_2, N_2. The CHF membrane was modified through oxidation, chemical vapour deposition(CVD) and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres(PORCHFs) significantly exceeded CHF performance showing higher CO_2 permeance(0.021 m^3(STP)/m^2 h bar) and CO_2/CH_4 selectivity of 246(5 bar feed vs 50 mbar permeate pressure). The highest performance recorded through experiments(CHF and PORCHF) was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS.A 300 Nm^3/h mixture of CO_2/CH_4 containing 30-50% CO_2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover99.5% CH_4 with 97.5% purity. Net present value(NPV) was calculated for base case and optimal pressure(50 bar for CHF and PORCHF). The results indicated that recycle ratio(recycle/feed) ranged from 0.2 to 10, specific energy from 0.15 to 0.8(kW/Nm^3 feed) and specific membrane area from 45 to 4700(m^2/Nm^3 feed). The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm^3 and a lifetime of 15 years, the technoeconomic analysis showed that payback time for the best cascade is 1.6 months.
基金supported by the National Key Research and Development Program of the 13th FiveYear Plan of China(Grant No.2018YFB1501805)。
文摘Investigation of a triple-pressure organic Rankine cycle(TPORC) using geothermal energy for power generation with the net power output of the TPORC analyzed by varying the evaporation pressures, pinch temperature differences(tpp) and degrees of superheat(tsup) aimed to find the optimum operation conditions of the system. The thermodynamic performance of the TPORC was compared with a dual-pressure organic Rankine cycle(DPORC) and a single-pressure ORC(SPORC) for geofluid temperatures ranging from 100°C to 200°C, with particular reference to the utilization of a hot dry rock(HDR) geothermal resource. Thermodynamic performances of the TPORC system using eight different organic working fluids have also been investigated in terms of the net power outputs. Results show that a higher geofluid mass flow rate can make a considerable contribution to shortening the payback period(PBP) as well as to decreasing the levelized electricity cost(LEC), especially when the geofluid temperature is low. For the temperature range investigated, the order from high to low based on thermodynamic and techno-economic performances is found to be TPORC > DPORC > SPORC. In terms of using geothermal resources within the given temperatures range(100°C–200°C), the TPORC system can be a better choice for geothermal power generation so long as the wellhead geofluid temperature is between 140°C and 180°C.
基金supported/funded by the Ministry of Higher Education under Fundamental Research Grant.Grant No.FRGS/1/2018/TK07/UTM/02/6.https://www.mohe.gov.my/en/initiatives-2/187-program-utama/penyelidikan/548-research-grants-inf-ormation.
文摘With population growth around the world,municipal waste disposal and continued energy demand becomes some of the major challenges to deal with.In order to address these,an approach is required for an optimal waste management system that offers the population benefit with a lower environmental impact.This study evaluates the technical-economic and environmental impact analysis of a grid-connected waste to energy(WtE)plant to power a Univerisiti Teknologi Malaysia(UTM)community.The energy recovery potential of the waste stream was assessed using the life cycle assessment(LCA)method with GaBi^(TM) software(version 4).A technical,economic and environmental analysis was then carried out for the grid-connected WtE system using HOMERPro software with gasification conversion technology.The cash flow analysis was based on levelized costs of energy(LCOE)and total net present value(NPV).The results gave an NPV for the system at USD 1.11×10^(7),with most of the effects resulting from the grid operating costs and the LCOE of USD 0.43/kWh compared to the grid unit price of USD 0.7/kWh which corresponds to a saving of$0.27/kWh in energy purchase.From an environmental point of view,the results showed a significant reduction in carbon dioxide emissions from around 2,000 tons per year to around 400 tons per year.With regard to the amount of waste sent to landfills,the results show a significant improvement from 142,605.5 kg/year to 0.13 kg/year.
文摘Techno-economic analysis of a small-scale Modified Plant Oil (MPO) production plant that has an annual production capacity of 15,072,741 kg of MPO (batch process) was carried out to estimate the capital and operating costs of a plant. The analysis was done by using a computer model that was designed and simulated with an aid of SuperPro Designer (Version 4.32) software. The specified feedstock was crude Jatropha oil (JO) and the main product was MPO. The major processes involved were degumming, neutralisation and blending. Degumming involved the removal of gums or phospholipids, and two methods were used: water degumming and acid degumming, whereas blending involved mixing of degummed or purified JO with natural gas condensate (NGC) modifier to lower the viscosity of JO. From techno-economic analysis of the process, it was found that the total capital investment of a plant was about US $ 10,222,000 and the predicted unit production cost of MPO was US $ 1.315/kg at a value of US $ 1.0/kg of JO. The economic feasibility of MPO production was found to be highly influenced by the price of feedstock, which contributed about 95% of the total annual production cost. The relationship between plant throughput and unit cost of producing MPO showed that unit production cost was very sensitive to production rate at low annual throughputs. The MPO cost showed a direct linear relationship with the cost of JO, with a change of US $ 0.50/kg of MPO in MPO cost in every change of US $ 0.50/kg of JO in JO price. The process technology simulated was found to be economically viable and can be implemented in rural setting, taking into consideration Tanzania’s rural situation.