A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and ...A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and server end at two remote places, a multi-layer part database based on Oracle platform is presented to store information of different parts of garment style. With the acquirement of remote design data at server end using Http technology, the style design is ultimately implemented at the client end using Auto-connecting algorithms. One empirical example is given to show the implementation of the NGSDS.展开更多
A composite ultraviolet (UV)/blue photode- tector structure has been proposed, which is composed of P-type silicon substrate, Pwelb Nwell and N-channel metal- oxide-semiconductor field-effect transistor (NMOSFET) ...A composite ultraviolet (UV)/blue photode- tector structure has been proposed, which is composed of P-type silicon substrate, Pwelb Nwell and N-channel metal- oxide-semiconductor field-effect transistor (NMOSFET) realized in the PweH. In this photodetector, lateral ring- shaped Pwell-Nwell junction was used to separate the photogenerated carriers, and non-equilibrium excess hole was injected to the Pwell bulk for changing the bulk potential and shifting the NMOSFET's threshold voltage as well as the output drain current. By technology computer-aided design (TCAD) device, simulation and analysis of this proposed photodetector were carried out. Simulation results show that the combined photodetector has enhanced responsivity to UV/blue spectrum. More- over, it exhibits very high sensitivity to weak and especially ultral-weak optical light. A sensitivity of 7000 A/W was obtained when an incident optical power of 0.01 μW was illuminated to the photodetector, which is 35000 times higher than the responsivity of a conventional silicon-based UV photodiode (usually is about 0.2 A/W). As a result, this proposed combined photodetector has great potential values for UV applications.展开更多
The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
文摘A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and server end at two remote places, a multi-layer part database based on Oracle platform is presented to store information of different parts of garment style. With the acquirement of remote design data at server end using Http technology, the style design is ultimately implemented at the client end using Auto-connecting algorithms. One empirical example is given to show the implementation of the NGSDS.
基金Acknowledgements This work was supported by the State Key Program of National Natural Science of China (Grant No. 61233010), the National Natural Science Foundation of China (Grant No. 61274043), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0975).
文摘A composite ultraviolet (UV)/blue photode- tector structure has been proposed, which is composed of P-type silicon substrate, Pwelb Nwell and N-channel metal- oxide-semiconductor field-effect transistor (NMOSFET) realized in the PweH. In this photodetector, lateral ring- shaped Pwell-Nwell junction was used to separate the photogenerated carriers, and non-equilibrium excess hole was injected to the Pwell bulk for changing the bulk potential and shifting the NMOSFET's threshold voltage as well as the output drain current. By technology computer-aided design (TCAD) device, simulation and analysis of this proposed photodetector were carried out. Simulation results show that the combined photodetector has enhanced responsivity to UV/blue spectrum. More- over, it exhibits very high sensitivity to weak and especially ultral-weak optical light. A sensitivity of 7000 A/W was obtained when an incident optical power of 0.01 μW was illuminated to the photodetector, which is 35000 times higher than the responsivity of a conventional silicon-based UV photodiode (usually is about 0.2 A/W). As a result, this proposed combined photodetector has great potential values for UV applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.