With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydroge...The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.展开更多
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.
基金Project supported by the National Natural Science Foundation of China(No.11372261)the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province(No.2013JQ0030)+3 种基金the Supporting Project of Department of Education of Sichuan Province(No.2014zd3132)the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process,Southwest University of Science and Technology-Ministry of Education(No.12zxzk02)the Fund of Doctoral Research of Southwest University of Science and Technology(No.12zx7106)the Postgraduate Innovation Fund Project of Southwest University of Science and Technology(No.14ycxjj0121)
文摘The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.