期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Neoarchean Magmatic Events in the Western Songnen Massif,Central Asian Orogenic Belt:Timing and Tectonic Significance
1
作者 WU Xinwei LIU Zhenghong +7 位作者 LIU Yongjiang ZHANG Chao SHAO Jun ZHANG Chao ZHANG Yujin GUO Wei LIU Baoshan ZHANG Guangyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期436-448,共13页
Whether a Neoarchean basement existing in the Songnen massif is currently debated.Identification of Archean magmatism from the Songnen Massif is helpful to resolve this issue.Here,we report newly discovered Neoarchean... Whether a Neoarchean basement existing in the Songnen massif is currently debated.Identification of Archean magmatism from the Songnen Massif is helpful to resolve this issue.Here,we report newly discovered Neoarchean Shanquan pluton in the Western Songnen Massif.These Neoarchean Shanquan pluton are mainly composed of granites that are exposed near the town of Shanquan in Heilongjiang Province.LA-ICP-MS zircon U-Pb dating reveals that the sample 2015TW1 has an upper intercept age of 2801±69 Ma and a weighted mean age of 2708±18 Ma,while samples LJ27QY1 and LJ27QY2 have upper intercept ages of 2677±57 Ma and 2653±18 Ma,and weighted mean ages of 2649±10 Ma and 2653±15 Ma,respectively.This indicates that these granites were formed at~2.7 Ga.Most of the~2.7 Ga zircons have older TDM2 ages of 2762–3326 Ma with positiveεHf(t)values ranging from 0 to 6.4,while a few of the zircons have negativeεHf(t)values ranging from-8.1 to-11.5 and older TDM2 ages varying from 3158 to 3264 Ma.The zircon Hf isotopes indicate that Paleo-Mesoarchean crusts might once existed in the Songnen Massif,and the studied Neoarchean magmas were principally derived from partial melting of these Paleo-Mesoarchean ancient crust.Based on the geochronological spectrum of magmatic and detrital zircons,the Songnen,Erguna,Jiamusi,Bureya massifs may have a common basement prior to the Neoproterozoic and may even be linked with the Triam Craton. 展开更多
关键词 tectonic attribute Neoarchean magmatism Precambrian basement Longjiang area Songnen Massif
下载PDF
Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-ultramafic Rocks, East Kunlun Orogen, China 被引量:17
2
作者 LI Ruibao PEI Xianzhi +6 位作者 LI Zuochen SUN Yu FENG Jianyong PEI Lei CHEN Guochao LIU Chengjun CHEN Youxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1319-1333,共15页
The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area, which are in the eastern part of the East Kunlun Orogenic Belt. It outcrops as tectonic slices intruding tectonically in the Paleopr... The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area, which are in the eastern part of the East Kunlun Orogenic Belt. It outcrops as tectonic slices intruding tectonically in the Paleoproterozoic Baishahe Group and the Paleozoic Nachitai Group. The Kekekete mafic and ultramafic rocks is located near the central fault in East Kunlun and lithologically mainly consists of serpentinite, augite peridotite, and gabbro. The LA-ICP-MS zircon U-Pb age of the gabbro is 501±7 Ma, indicating that Kekekete mafic-ultramafic rocks formed in the Middle Cambrian. This rock assemblage is relatively poor in SiO2 and (Na20+K20) but rich in MgO and SFeO. The chondrite-normalized REE patterns of the gabbro dip slightly to the right; the primitive mantle and MORB-normalized spidergrams of trace elements show enrichment of large-ion lithophile elements (Cs, Rb, Ba, etc.) and no differentiation of high field strength elements. The general dominance of E- MORB features and the geochemical characteristics of OIB suggest that the Kekekete mafic- ultramafic rocks formed in an initial oceanic basin with slightly enriched mantle being featured by varying degrees of mixing of N-MORB depleted mantle and a similar-OIB-type source. From a comprehensive study of the previous data, the author believes that the tectonic history of the East Kunlun region was controlled by a geodynamic system of rifting and extension in the late stages of the Neoproterozoic to early stages of the Early Paleozoic and this formed the paleo-oceanic basin or rift system now represented by the ophiolites along the central fault in East Kunlun, the Kekekete mafic- ultramafic rocks and Delisitan ophiolite. 展开更多
关键词 OPHIOLITE tectonic attribute Kekekete East Kunlun Orogeny
下载PDF
Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea 被引量:21
3
作者 SUN XiaoMeng ZHANG XuQing +3 位作者 ZHANG GongCheng LU BaoLiang YUE JunPei ZHANG Bin 《Science China Earth Sciences》 SCIE EI CAS 2014年第6期1199-1211,共13页
Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin ba... Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled. 展开更多
关键词 northern South China Sea basin basement structural layer tectonic attribute
原文传递
The structural characteristics, age of origin, and tectonic attribute of the Erguna Fault, NE China 被引量:5
4
作者 ZHENG Han SUN XiaoMeng +4 位作者 ZHU DeFeng TIAN JingXiong HE Song WANG YingDe ZHANG XuQing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1553-1565,共13页
The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar... The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract. 展开更多
关键词 Erguna Fault ductile shear zone MYLONITE 40^Ar/39^Ar plateau age tectonic attribute
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部