To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the t...To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.展开更多
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon...The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration.展开更多
There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stag...There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stages and two infiltration hydrodynamic stages from the Sinian to the Cenozoic, while the upper play had one sedimentary hydrodynamic stage, one burial hydrodynamic stage, two tectonic hydrodynamic stages and one infiltration hydrodynamic stage from the Permian to the Cenozoic. Extensive flows of both sedimentary water, including hydrocarbons, and deep mantle fluid occurred in the Chengkou faults during collision orogeny in the Middle-Late Triassic Indosinian orogeny, and fluid flow was complicated during intracontinental orogeny in the Middle-Late Jurassic. In addition to these movements, infiltration and movement of meteoric water took place in the Chengkou faults, whereas in the covering-strata decollement tectonic belt, extensive sedimentary water flow (including hydrocarbons) occurred mainly in the Zhenba and Pingba faults. During the stage of rapid uplift and exhumation from the Cretaceous to the Cenozoic, the fluid flow was characterized mainly by infiltration of meteoric water and gravity-induced flow caused by altitude difference, whereas sedimentary water flow caused by tectonic processes was relatively less significant. Sedimentary water flow was more significant to the lower play in hydrocarbon migration and accumulation during collision orogeny in the Middle-Late Triassic Indosinian orogeny, but its influence is relatively slight on the upper play. On one hand, hydrodynamics during intracontinental orogeny in the Middle-Late Jurassic adjusted, reformed or oven destroyed oil reservoirs in the lower play; on the other hand, it drove large amounts of hydrocarbons to migrate laterally and vertically and is favorable for hydrocarbon accumulation. Infiltration hydrodynamics mainly adjusted and destroyed oil reservoirs from the Cretaceous to the Cenozoic.展开更多
The evolution of the global Tethys Sea can be classified into three stages, Proto-Tethys, Paleo-Tethys and Neo-Tethys. The Tethyan realm has distinctive features of zonations and segmentations along north-south and ea...The evolution of the global Tethys Sea can be classified into three stages, Proto-Tethys, Paleo-Tethys and Neo-Tethys. The Tethyan realm has distinctive features of zonations and segmentations along north-south and east-west, respectively, and has variable richness in oil and gas. The petroleum geological conditions of Tethys are complicated, partly represented by multi-layer of source and seal rocks, and reservoirs. The hydrocarbon accumulation elements and periods of the Tethyan realm show gradually younger from west to east and north to south. South China is located in the north belt and Yangtze segment of the Tethyan realm, and its polycyclic tectonic movements were governed by the Tethyan and Pacific realms. The blocks in South China rotated clockwise and counter-clockwise during their drift northward from Gondwana. The belts and segmentations of Tethys in South China are also clear, with six tectonic belts including: Chuxiong-Sichuan; middle Guizhou-Hunan-Hubei; lower Yangtze; Xuefeng-Jiangnan; Guangxi-Hunan-Jiangxi; and Cathaysia. Numerous faults, including compressional, compressional-shear, extensional, extensional-shear and shear are well developed in South China. The fault strikes are mainly NE, NW and NS, in which the NE is the dominant direction. Lower, middle and upper hydrocarbon assemblages, respectively corresponding to Proto-, Paleo- and Neo-Tethys, formed in the Tethyan realm of South China with the lower and middle having excellent hydrocarbon accumulation conditions. An integrated analysis of tectonic evolution, superimposed deformation and later hydrocarbon preservation shows that during the Neo-Tethyan stage in South China, continental sediments were deposited and experienced intense tectonic deformation, which had resulted in different hydrocarbon pool-forming features from those of the Neo-Tethyan realm.展开更多
The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismi...The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismic profile "layer flattening" and "restoration of balanced section", and other methods, the sedimentary boundary, structure and the evolution history of the Tianhuan depression on the western margin of the Ordos Basin are reestablished. The following results have been obtained. (1) The west boundary of the Late Triassic Ordos Basin was far beyond the scope of the current basin. The basin is connected with the Late Triassic Hexi Corridor Basin, and its western margin did not have tectonic characteristics of a foreland basin. (2) The Tianhuan depression was first formed in the Late Jurassic. At the late stage it was impacted by the late Yanshanian and Himalayan tectonic movement and the depression axis gradually moved eastwards to the present location with a cumulative migration distance of -30 km. (3) Eastward migration of the depression axis caused adjustment and even destruction of the originally formed oil and gas reservoirs, so that oil and gas remigrated and aggregated, resulting in secondary structural reservoirs formed at high positions on the western flank of the depression.展开更多
Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow...Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.展开更多
Based on the seismic and drilling data, casting thin sections, geochemical analysis of oil and rock samples, and hydrocarbon generation history simulation, the hydrocarbon accumulation characteristics and exploration ...Based on the seismic and drilling data, casting thin sections, geochemical analysis of oil and rock samples, and hydrocarbon generation history simulation, the hydrocarbon accumulation characteristics and exploration direction of Termit superimposed marine–continental rift basin are discussed. The Termit basin is superimposed with two-phase rifts(Early Cretaceous and Paleogene). The subsidence curves from two wells on the Trakes slope in the east of the basin show high subsidence rate in the Late Cretaceous, which is believed to be high deposition rate influenced by transgression. However, a weak rift may also be developed. The depositional sequences in the Termit basin were controlled by the Late Cretaceous marine transgression cycle and the Paleogene lacustrine transgression cycle, giving rise to two types of superimposed marine–continental “source-sink” deposits. The marine and continental mixed source rocks developed universally in the whole basinduring the marine transgression period, and are overlaid by the Paleogene Sokor 1 reservoir rocks and Sokor 2 caprocks developed during the lacustrine transgression period, forming the unique superimposed marine–continental basin in WCARS. The early low geothermal gradient in the Termit basin resulted in the late hydrocarbon generated by the source rock of Upper Cretaceous Yogou in Paleogene. Mature source rock of Upper Cretaceous Donga developed in the Trakes slope, so that the double-source-supply hydrocarbon and accumulation models are proposed for the Trakes slope in which formed the oil fields. Due to virtue of the newly proposed hydrocarbon accumulation model and the exploration activities in recent years in the Termit superimposed marine–continental rift basin, an additional effective exploration area of about 2500 km2has been confirmed in the east of the basin. It is believed that potential domains such as Sokor 1, Donga and Upper Cretaceous lithologic traps in the southeast of the basin are key expected targets for exploration and frontier evaluation in future.展开更多
According to well logs, core, seismic and other geological data, the authors studied the tectonic evolution stages, trap formation stages, fault and fracture development in the Bashituo area, and furthermore, analyzed...According to well logs, core, seismic and other geological data, the authors studied the tectonic evolution stages, trap formation stages, fault and fracture development in the Bashituo area, and furthermore, analyzed the time of hydrocarbon accumulation, hydrocarbon migration pathways and related controversial issues in the study area. It is believed that the tectonic evolution in the study area can be divided into three stages, namely Late Hercynian, the Early Himalayan and the Late Himalayan. In the Late Hercynian, tectonic movement led to folding and faulting, resulting in the embryonic form of anticlinal traps. In the Early Himalayan, affected by both tectonic movement and transformation, deep faults reactivated and cut through the Lower Tertiary strata. After the Early Himalayan tectonic movement, faulting stopped and no vertical migration pathway was available . Then hydrocarbon migrated laterally along the sand bodies in the Bachu Formation and accumulated in the Carboniferous reservoirs. However, the Carboniferous accumulation was formed late, and the tectonic movement was weak at the Late Himalayan, and faults were underdeveloped, so the reservoirs in the deep Bachu Formation were not disturbed.展开更多
By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thru...By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thrust nappes in northwest Scihuan Basin is a buried thrust fault with partial exposure in the Xiangshuichang-Jiangyou area,forming fault propagation folds in the hanging-wall and without presenting large-scale basin-ward displacement along the gypsum-salt layer of the Triassic Jialingjiang Formation to the Triassic Leikoupo Formation.The southwestern portion of the frontier fault of thrust nappes(southwest of Houba)forms fault bend folds with multiple ramps and flats,giving rise to the Zhongba anticline due to hanging-wall slip along the upper flat of the Jialingjiang Formation.In contrast,the northeastern portion of the frontier fault of thrust nappes(northeast of Houba)presents upward steepening geometry,leading to surface exposure of Cambrian in its hanging-wall.With the frontier fault of thrust nappes as the boundary between the Longmenshan Mountain and the Sichuan Basin,the imbricated structural belt in the hanging-wall thrusted strongly in the Indosinian orogeny and was reactivated in the Himalayan orogeny,while the piedmont buried structural belt in the footwall was formed in the Himalayan orogeny.In the footwall of the frontier fault of thrust nappes,the piedmont buried structural belt has good configuration of source rocks,reservoir rocks and cap rocks,presenting good potential to form large gas reservoirs.In comparison,the hanging-wall of the frontier fault of thrust nappes north of Chonghua has poor condition of oil/gas preservation due to the surface exposure of Triassic and deeper strata,while the fault blocks in the hanging-wall from Chonghua to Wudu,with Jurassic cover and thicker gypsum-salt layer of the Jialingjiang formation,has relative better oil/gas preservation conditions and thus potential of oil/gas accumulation.The frontier fault of thrust nappes is not only the boundary between the Longmenshan Mountain and the Sichuan Basin,but also the boundary of the oil/gas accumulation system in northwestern Sichuan Basin.展开更多
基金granted by the National Science and Technology Major Project(No.2016ZX05026-004)National Natural Science Foundation of China(No.91528303)。
文摘To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.
基金supported by the China Geological Survey Projects of Shale Gas Survey in the GuizhongNanpanjiang Area (DD20190088)Investigation and evaluation of Paleozoic shale gas in Yunnan-Guizhou-Guangxi region (DD20230264)+1 种基金Investigation and Evaluation of Carboniferous Shale Gas in Southern Guizhou-Central Guangxi (ZDDYR2023018)Reservoir Characteristics and Gas Accumulation of Trough-platform Shale: A Case Study of Early Carboniferous Shale in Yaziluo Rift Trough (YKC2023-YC08)。
文摘The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration.
基金presents part of the achievements of project "Research on tectonic evolution and hydrocarbon prospect of the Dabashan foreland belt",financially supported by China Petroleum and Chemical Corporation
文摘There are two plays in the Dabashan foreland tectonic belt: the upper and the lower plays. The lower play experienced one sedimentary hydrodynamic stage, two burial hydrodynamic stages, two tectonic hydrodynamic stages and two infiltration hydrodynamic stages from the Sinian to the Cenozoic, while the upper play had one sedimentary hydrodynamic stage, one burial hydrodynamic stage, two tectonic hydrodynamic stages and one infiltration hydrodynamic stage from the Permian to the Cenozoic. Extensive flows of both sedimentary water, including hydrocarbons, and deep mantle fluid occurred in the Chengkou faults during collision orogeny in the Middle-Late Triassic Indosinian orogeny, and fluid flow was complicated during intracontinental orogeny in the Middle-Late Jurassic. In addition to these movements, infiltration and movement of meteoric water took place in the Chengkou faults, whereas in the covering-strata decollement tectonic belt, extensive sedimentary water flow (including hydrocarbons) occurred mainly in the Zhenba and Pingba faults. During the stage of rapid uplift and exhumation from the Cretaceous to the Cenozoic, the fluid flow was characterized mainly by infiltration of meteoric water and gravity-induced flow caused by altitude difference, whereas sedimentary water flow caused by tectonic processes was relatively less significant. Sedimentary water flow was more significant to the lower play in hydrocarbon migration and accumulation during collision orogeny in the Middle-Late Triassic Indosinian orogeny, but its influence is relatively slight on the upper play. On one hand, hydrodynamics during intracontinental orogeny in the Middle-Late Jurassic adjusted, reformed or oven destroyed oil reservoirs in the lower play; on the other hand, it drove large amounts of hydrocarbons to migrate laterally and vertically and is favorable for hydrocarbon accumulation. Infiltration hydrodynamics mainly adjusted and destroyed oil reservoirs from the Cretaceous to the Cenozoic.
基金funded jointly by the National Natural Science Foundation of China (No.40802030)the National Major Fundamental Research and Development Project (No.2005CB422107)
文摘The evolution of the global Tethys Sea can be classified into three stages, Proto-Tethys, Paleo-Tethys and Neo-Tethys. The Tethyan realm has distinctive features of zonations and segmentations along north-south and east-west, respectively, and has variable richness in oil and gas. The petroleum geological conditions of Tethys are complicated, partly represented by multi-layer of source and seal rocks, and reservoirs. The hydrocarbon accumulation elements and periods of the Tethyan realm show gradually younger from west to east and north to south. South China is located in the north belt and Yangtze segment of the Tethyan realm, and its polycyclic tectonic movements were governed by the Tethyan and Pacific realms. The blocks in South China rotated clockwise and counter-clockwise during their drift northward from Gondwana. The belts and segmentations of Tethys in South China are also clear, with six tectonic belts including: Chuxiong-Sichuan; middle Guizhou-Hunan-Hubei; lower Yangtze; Xuefeng-Jiangnan; Guangxi-Hunan-Jiangxi; and Cathaysia. Numerous faults, including compressional, compressional-shear, extensional, extensional-shear and shear are well developed in South China. The fault strikes are mainly NE, NW and NS, in which the NE is the dominant direction. Lower, middle and upper hydrocarbon assemblages, respectively corresponding to Proto-, Paleo- and Neo-Tethys, formed in the Tethyan realm of South China with the lower and middle having excellent hydrocarbon accumulation conditions. An integrated analysis of tectonic evolution, superimposed deformation and later hydrocarbon preservation shows that during the Neo-Tethyan stage in South China, continental sediments were deposited and experienced intense tectonic deformation, which had resulted in different hydrocarbon pool-forming features from those of the Neo-Tethyan realm.
文摘The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismic profile "layer flattening" and "restoration of balanced section", and other methods, the sedimentary boundary, structure and the evolution history of the Tianhuan depression on the western margin of the Ordos Basin are reestablished. The following results have been obtained. (1) The west boundary of the Late Triassic Ordos Basin was far beyond the scope of the current basin. The basin is connected with the Late Triassic Hexi Corridor Basin, and its western margin did not have tectonic characteristics of a foreland basin. (2) The Tianhuan depression was first formed in the Late Jurassic. At the late stage it was impacted by the late Yanshanian and Himalayan tectonic movement and the depression axis gradually moved eastwards to the present location with a cumulative migration distance of -30 km. (3) Eastward migration of the depression axis caused adjustment and even destruction of the originally formed oil and gas reservoirs, so that oil and gas remigrated and aggregated, resulting in secondary structural reservoirs formed at high positions on the western flank of the depression.
文摘Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.
基金Supported by CNPC Scientific Research and Technology Development Project (2021DJ3103)CNODC Overseas Rresearch and Development Support Project (2023-YF-01-04)。
文摘Based on the seismic and drilling data, casting thin sections, geochemical analysis of oil and rock samples, and hydrocarbon generation history simulation, the hydrocarbon accumulation characteristics and exploration direction of Termit superimposed marine–continental rift basin are discussed. The Termit basin is superimposed with two-phase rifts(Early Cretaceous and Paleogene). The subsidence curves from two wells on the Trakes slope in the east of the basin show high subsidence rate in the Late Cretaceous, which is believed to be high deposition rate influenced by transgression. However, a weak rift may also be developed. The depositional sequences in the Termit basin were controlled by the Late Cretaceous marine transgression cycle and the Paleogene lacustrine transgression cycle, giving rise to two types of superimposed marine–continental “source-sink” deposits. The marine and continental mixed source rocks developed universally in the whole basinduring the marine transgression period, and are overlaid by the Paleogene Sokor 1 reservoir rocks and Sokor 2 caprocks developed during the lacustrine transgression period, forming the unique superimposed marine–continental basin in WCARS. The early low geothermal gradient in the Termit basin resulted in the late hydrocarbon generated by the source rock of Upper Cretaceous Yogou in Paleogene. Mature source rock of Upper Cretaceous Donga developed in the Trakes slope, so that the double-source-supply hydrocarbon and accumulation models are proposed for the Trakes slope in which formed the oil fields. Due to virtue of the newly proposed hydrocarbon accumulation model and the exploration activities in recent years in the Termit superimposed marine–continental rift basin, an additional effective exploration area of about 2500 km2has been confirmed in the east of the basin. It is believed that potential domains such as Sokor 1, Donga and Upper Cretaceous lithologic traps in the southeast of the basin are key expected targets for exploration and frontier evaluation in future.
文摘According to well logs, core, seismic and other geological data, the authors studied the tectonic evolution stages, trap formation stages, fault and fracture development in the Bashituo area, and furthermore, analyzed the time of hydrocarbon accumulation, hydrocarbon migration pathways and related controversial issues in the study area. It is believed that the tectonic evolution in the study area can be divided into three stages, namely Late Hercynian, the Early Himalayan and the Late Himalayan. In the Late Hercynian, tectonic movement led to folding and faulting, resulting in the embryonic form of anticlinal traps. In the Early Himalayan, affected by both tectonic movement and transformation, deep faults reactivated and cut through the Lower Tertiary strata. After the Early Himalayan tectonic movement, faulting stopped and no vertical migration pathway was available . Then hydrocarbon migrated laterally along the sand bodies in the Bachu Formation and accumulated in the Carboniferous reservoirs. However, the Carboniferous accumulation was formed late, and the tectonic movement was weak at the Late Himalayan, and faults were underdeveloped, so the reservoirs in the deep Bachu Formation were not disturbed.
基金Supported by the National Natural Science Foundation of China(41872143)National Science and Technology Major Project of China(2016ZX05007-004)PetroChina Science and Technology Major Project(2016E-0604)。
文摘By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thrust nappes in northwest Scihuan Basin is a buried thrust fault with partial exposure in the Xiangshuichang-Jiangyou area,forming fault propagation folds in the hanging-wall and without presenting large-scale basin-ward displacement along the gypsum-salt layer of the Triassic Jialingjiang Formation to the Triassic Leikoupo Formation.The southwestern portion of the frontier fault of thrust nappes(southwest of Houba)forms fault bend folds with multiple ramps and flats,giving rise to the Zhongba anticline due to hanging-wall slip along the upper flat of the Jialingjiang Formation.In contrast,the northeastern portion of the frontier fault of thrust nappes(northeast of Houba)presents upward steepening geometry,leading to surface exposure of Cambrian in its hanging-wall.With the frontier fault of thrust nappes as the boundary between the Longmenshan Mountain and the Sichuan Basin,the imbricated structural belt in the hanging-wall thrusted strongly in the Indosinian orogeny and was reactivated in the Himalayan orogeny,while the piedmont buried structural belt in the footwall was formed in the Himalayan orogeny.In the footwall of the frontier fault of thrust nappes,the piedmont buried structural belt has good configuration of source rocks,reservoir rocks and cap rocks,presenting good potential to form large gas reservoirs.In comparison,the hanging-wall of the frontier fault of thrust nappes north of Chonghua has poor condition of oil/gas preservation due to the surface exposure of Triassic and deeper strata,while the fault blocks in the hanging-wall from Chonghua to Wudu,with Jurassic cover and thicker gypsum-salt layer of the Jialingjiang formation,has relative better oil/gas preservation conditions and thus potential of oil/gas accumulation.The frontier fault of thrust nappes is not only the boundary between the Longmenshan Mountain and the Sichuan Basin,but also the boundary of the oil/gas accumulation system in northwestern Sichuan Basin.