Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent con...Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.展开更多
The boundary between cratonic and orogenic lithospheres is a significant seismogenic zones marked by intense lithospheric deformation.The Sichuan Craton(SCC),as a key tectonic block bordering eastern Tibetan Plateau,r...The boundary between cratonic and orogenic lithospheres is a significant seismogenic zones marked by intense lithospheric deformation.The Sichuan Craton(SCC),as a key tectonic block bordering eastern Tibetan Plateau,resists the eastward escape of plateau's crustal materials,resulting in the uplift of the Songpan-Ganzi Block(SGB)and crustal deformation of the Longmenshan tectonic belt(LMTB).To elucidate the compressional structures and deformational modes of the LMTB and SCC,it is essential to accurately determine the location and geometry of the SCC'western boundary.To investigate this issue,the lithospheric properties of the obducted SGB,underthrusting SCC,and LMTB were analyzed using various geophysical data,including seismic reflection profiles,magnetotellurics,aeromagnetics,gravity,and seismic tomography.The SGB crust is characterized by low magnetism,seismic velocity,resistivity and Bouguer gravity,whereas the SCC crust exhibits non-uniform high magnetism,seismic velocity,resistivity and Bouguer gravity.The LMTB,as the boundary between the SGB and SCC,exhibits geophysical characteristics similar to those of the SCC in the southern and central segments.The integration of these geophysical observations indicate that the SCC's western boundary is situated west of the Wenchuan-Maoxian fault zone in the southern and central segments,exhibiting distinct westward wedging and underthrusting.However,this boundary aligns with the Yingxiu-Beichuan fault in the northern segment,without significant underthrusting.The irregular geometry of the SCC's western boundary further elucidates the variation in structural deformation along the LMTB.By comparing crustal thickness and lithospheric strength between the SGB and SCC,this study posits that the differing crustal strength between tectonic blocks may control the irregular geometry of the SCC's western boundary.展开更多
基金partially supported by the National Natural Science Foundation of China(91955210,41625016,and 41888101)。
文摘Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.
基金supported by the National Natural Science Foundation of China(Nos.U22B6002,42422402,41902202 and 42276222)the SINOPEC Key Laboratory of Geophysics(No.FW0399-0029)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research(No.2019QZKK00708)the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(No.SCSIO202207)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB22B23)。
文摘The boundary between cratonic and orogenic lithospheres is a significant seismogenic zones marked by intense lithospheric deformation.The Sichuan Craton(SCC),as a key tectonic block bordering eastern Tibetan Plateau,resists the eastward escape of plateau's crustal materials,resulting in the uplift of the Songpan-Ganzi Block(SGB)and crustal deformation of the Longmenshan tectonic belt(LMTB).To elucidate the compressional structures and deformational modes of the LMTB and SCC,it is essential to accurately determine the location and geometry of the SCC'western boundary.To investigate this issue,the lithospheric properties of the obducted SGB,underthrusting SCC,and LMTB were analyzed using various geophysical data,including seismic reflection profiles,magnetotellurics,aeromagnetics,gravity,and seismic tomography.The SGB crust is characterized by low magnetism,seismic velocity,resistivity and Bouguer gravity,whereas the SCC crust exhibits non-uniform high magnetism,seismic velocity,resistivity and Bouguer gravity.The LMTB,as the boundary between the SGB and SCC,exhibits geophysical characteristics similar to those of the SCC in the southern and central segments.The integration of these geophysical observations indicate that the SCC's western boundary is situated west of the Wenchuan-Maoxian fault zone in the southern and central segments,exhibiting distinct westward wedging and underthrusting.However,this boundary aligns with the Yingxiu-Beichuan fault in the northern segment,without significant underthrusting.The irregular geometry of the SCC's western boundary further elucidates the variation in structural deformation along the LMTB.By comparing crustal thickness and lithospheric strength between the SGB and SCC,this study posits that the differing crustal strength between tectonic blocks may control the irregular geometry of the SCC's western boundary.