Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis usi...Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.展开更多
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ...Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.展开更多
Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical v...Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine. According to a characteristic analysis and a summary of the rules of coal and gas outbursts in the No.8 coal seam of a Hua- inan mine, we have investigated their effect on coal and gas outbursts in terms such as ground stress, gas, and coal structure. We have selected gas parameters and determined the critical values of each of the fol- lowing indices: gas content as 7.7 m^3/t, tectonic coal as 0.8 m thick, the absolute gas emission as 2 m3/min, the rate of change as 0.7 m3/min, the gas desorption index of a drilling chip KI as 0.26 mL/(g min^1/2) and the values of desorption indexes Ah2 as 200 Pa. From a verification of the production, the results indicate that application of each index and their critical values significantly improve the level of safety in the pro- duction process, relieve the burden upon the mine, save much labor and bring clear economic benefits.展开更多
Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic bloc...Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.展开更多
The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and...The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.展开更多
Alluvial fans are grouped in buildings which can provide important evidence of tectonic and climatic changes [1], Shahrud-Bastam area as structure point is located between Eastern Alborz structural zones in the north ...Alluvial fans are grouped in buildings which can provide important evidence of tectonic and climatic changes [1], Shahrud-Bastam area as structure point is located between Eastern Alborz structural zones in the north and central Iran structural zone in the south. In this study, we have measured 16 indicators morphotectonic on 79 alluvial fans and 46 catchments, according to the results of the measurements of morphometric parameters of alluvial basins and watershed, we find out that Qods-Armiyan’s fault zone has the most of tectonic activity between Tazareh and Shahrud fault regions. According to the index As, the development of alluvial fans often has a direct relationship with Level rise, which has a particular importance in the study field.展开更多
Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is wid...Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is widely accepted tool due to visible responses in Drainage architecture to an intense tectonic environment. The present morphology of Yamuna basin in the Garhwal Himalaya, India is a result of continuing crustal deformation;erosion and deposition in the area. The drainage system and geomorphic expression of topography have been significantly influenced by active tectonics in this basin. In present study, for numerical modelling to detect the influence of tectonic signals on landform, we used morphotectonic parameters, to gradient index (SL), valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index (BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution of 30 m. All these morphotectonic parameters are integrated to produce an index of relative active tectonics (IRAT). The Yamuna basin is classified into three groups based on IRAT, very high (<2.0);moderate (2.0 - 2.25) and low (>2.25) based on the degree of tectonic activity. Result shows approx. 56% of Yamuna basin experience high tectonic activity. This along strike deformation pattern pronouncedly emulates subsurface geometry based tectonic model.展开更多
Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin...Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.展开更多
Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for ...Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.展开更多
文摘Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.
基金The research results are part of a project carried out in 1999-2002 and financially supported by the US National Foundation(No.ASF EARO125968)in 2001-2003 and financially supported by the National Natural Science Foundation of China(Nos.40271089)the Major Sci-Tech Research Project of the Ministry of Education.
文摘Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.
基金supported by the National Key Basic Research Program of China (No.2005CB 221501)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No.084200510002)the Program for New Century Excellent Talents in University (No.NCET-07-0257)
文摘Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine. According to a characteristic analysis and a summary of the rules of coal and gas outbursts in the No.8 coal seam of a Hua- inan mine, we have investigated their effect on coal and gas outbursts in terms such as ground stress, gas, and coal structure. We have selected gas parameters and determined the critical values of each of the fol- lowing indices: gas content as 7.7 m^3/t, tectonic coal as 0.8 m thick, the absolute gas emission as 2 m3/min, the rate of change as 0.7 m3/min, the gas desorption index of a drilling chip KI as 0.26 mL/(g min^1/2) and the values of desorption indexes Ah2 as 200 Pa. From a verification of the production, the results indicate that application of each index and their critical values significantly improve the level of safety in the pro- duction process, relieve the burden upon the mine, save much labor and bring clear economic benefits.
基金The work was supported bythe public welfare programofthe Ministry of Science and Technology of China (2004DIA3J010)the special preparatoryresearch of national keyfun-damental research project (2002CCD01700)the Young Scientists Funds of Institute of Earthquake Science , CEA(QN200401) .
文摘Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.
基金funded by the Youth Program of Earthquake Scientific Research Fund of Anhui Province(20120704)Contract Subject of Earthquake Administration of Anhui Province(201210)
文摘The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.
文摘Alluvial fans are grouped in buildings which can provide important evidence of tectonic and climatic changes [1], Shahrud-Bastam area as structure point is located between Eastern Alborz structural zones in the north and central Iran structural zone in the south. In this study, we have measured 16 indicators morphotectonic on 79 alluvial fans and 46 catchments, according to the results of the measurements of morphometric parameters of alluvial basins and watershed, we find out that Qods-Armiyan’s fault zone has the most of tectonic activity between Tazareh and Shahrud fault regions. According to the index As, the development of alluvial fans often has a direct relationship with Level rise, which has a particular importance in the study field.
文摘Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is widely accepted tool due to visible responses in Drainage architecture to an intense tectonic environment. The present morphology of Yamuna basin in the Garhwal Himalaya, India is a result of continuing crustal deformation;erosion and deposition in the area. The drainage system and geomorphic expression of topography have been significantly influenced by active tectonics in this basin. In present study, for numerical modelling to detect the influence of tectonic signals on landform, we used morphotectonic parameters, to gradient index (SL), valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index (BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution of 30 m. All these morphotectonic parameters are integrated to produce an index of relative active tectonics (IRAT). The Yamuna basin is classified into three groups based on IRAT, very high (<2.0);moderate (2.0 - 2.25) and low (>2.25) based on the degree of tectonic activity. Result shows approx. 56% of Yamuna basin experience high tectonic activity. This along strike deformation pattern pronouncedly emulates subsurface geometry based tectonic model.
文摘Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.
基金This work is supported by the National Natural Science Foundation of China(U1839211)the Spark Program of Earthquake Science and Technology(XH20044)the State Key Laboratory of Earthquake Dynamics(No.LED2018B06).
文摘Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.