Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb ...Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.展开更多
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks,...The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud展开更多
The Napo-Qinzhou Tectonic Belt (NQTB) lies at the junction of the Yangtze, Cathaysia and Indochina (North Vietnam) Blocks, which is composed of five major lithotectonic subunits: the Qinzhou-Fangcheng Suture Zone...The Napo-Qinzhou Tectonic Belt (NQTB) lies at the junction of the Yangtze, Cathaysia and Indochina (North Vietnam) Blocks, which is composed of five major lithotectonic subunits: the Qinzhou-Fangcheng Suture Zone (QFSZ), the Shiwandashan Basin (SB), the Pingxiang-Nanning Suture Zone (PNSZ), the Damingshan Block (DB) and the Babu-Lingma Suture Zone (BLSZ). On the basis of geochemical compositions, the Permian mafic igneous rocks can be divided into three distinct groups: (1) mafic igneous rocks (Group 1) from the Longjing region in the PNSZ and Hurun region in the BLSZ, which are characterized by intermediate Ti, P and Zr with low Ni and Cr contents; (2) mafic igneous rocks (Group 2) from the Naxiao and Chongzuo region in the DB, characterized by low-intermediate Ti, P and Zr with high Ni and Cr concentrations; and (3) mafic igneous rocks (Group 3) from the Siming region in the Jingxi carbonate platform of the northwestern margin of the NQTB, with intermediate-high Ti, P and Zr and low Ni and Cr contents. The Group 1 rocks yield a weighted mean 206 Pb/ 238 U age of 250.5±2.8 Ma and are geochemically similar to basalts occurring in back-arc basin settings. The Group 2 rocks exhibit geochemical features to those basalts in island arcs, whereas the Group 3 rocks show geochemical similarity to that of ocean island basalts. All three groups are characterized by relatively low ε Nd (t) values (-2.61 to +1.10) and high initial 87 Sr/ 86 Sr isotopic ratios (0.705309-0.707434), indicating that they were derived from a subduction-modified lithospheric mantle and experienced assimilation, fractional crystallization, and crustal contamination or mixing during magmatic evolution. Accordingly, we propose the existence of an arc-back arc basin system that developed along the NQTB at the border of SW Guangxi Province (SW China) and northern Vietnam, and it was formed by continued northwestward subduction of the Cathaysian (or Yunkai) Block under the Yangtze Block, and northeastward subduction of the Indochina Block beneath the Yangtze Block during Permian time.展开更多
In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which c...In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision.展开更多
The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship betwe...The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship between these rocks and the iron deposits are studied.Geochemically,the ore-hosting volcanic rocks are sodiumrich(the averages of Na2O and Na2O/K2O are 4.31 wt.%and 8.56,respectively)and belong to the calc-alkaline series.They are enriched in LREEs and LILEs(Ba,U,K,and Sr),but depleted in HFSEs(Nb,Ta,and Ti).SHRIMP zircon U–Pb dating of the crystal tuff in the Aqishan Formation and the dacite in the Tugutu Bulak Formation yields ages of 337.52.3 Ma(n?15,MSWD?0.85)and 313.03.3 Ma(n?13,MSWD?0.74),respectively,indicating that the sodium-rich volcanic rocks formed from the early–late Carboniferous.Electron microprobe data from plagioclases demonstrate that albites and/or oligoclases were formed in the basic–intermediate–acid volcanic rocks.Two stages of albitization are identified,and the latter is likely attributed to the dissolution of iron in the Aqishan–Yamansu belt.The sodium-rich volcanic rocks probably formed by the interaction between volcanic lava and seawater after volcanoes erupted on the seafloor;meanwhile,the albites formed by element substitution in a low-metamorphic environment.The spatiotemporal coupling relationship between sodium-rich volcanic rocks and iron deposits in the Aqishan–Yamansu belt is favorable.Iron dissolved from the dark minerals of basic–intermediate volcanic rocks through sodium metasomatism is one of the material sources for the iron deposits.展开更多
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic b...Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.展开更多
A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, hig...A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids.展开更多
The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mec...The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.展开更多
1 Introduction Daxinganling region is one of the most important nonferrous metal metallogenetic province(Wu et al.,2011;Li et al.,2014).The northern Daxinganling was a geological blank area in China formerly(Li et al....1 Introduction Daxinganling region is one of the most important nonferrous metal metallogenetic province(Wu et al.,2011;Li et al.,2014).The northern Daxinganling was a geological blank area in China formerly(Li et al.,2017).However,the region has a huge resource potential.Forty metal deposits have been found in the area recently,with展开更多
The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor...The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).展开更多
Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the stru...Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.展开更多
Geochemical characteristics of the Upper Permian (P-2) continental marginal arc volcanic rocks are described, which have been found recently around the areas of Xiaodingxi and Zangli on the eastern side of the Yunxian...Geochemical characteristics of the Upper Permian (P-2) continental marginal arc volcanic rocks are described, which have been found recently around the areas of Xiaodingxi and Zangli on the eastern side of the Yunxian|Lincang granite, in terms of rock assemblage, petrochemistry, REE, trace elements, Pb isotopes, geotectonic environment and so on. The volcanic rock assemblage is dominated by basalt-andesite-dacite, with minor trachyte andecite-trachyte; the volcanic rock series is predominated by the calc-alkaline series, with minor tholleiite series and alkaline series rocks; the volcanic rocks are characterized by high Al-2O-3 and low TiO-2, with K-2O contents showing extremely strong polarity; the REE distribution patterns are characterized by LREE enrichment and right-inclined type; trace elements and large cation elements are highly enriched, Ti and Cr are depleted, and P and Nb are partially depleted; the Pb composition is of the Gondwana type; the petrochemical points mostly fall within the field of island-arc volcanic rocks, in consistency with the projection of data points of continental marginal volcanic rocks in the southern segment of the South Lancangjiang Belt and the North Lancangjiang Belt. This continental marginal arc volcanic rock belt, together with the ocean-ridge and ocean-island volcanic rocks and ophiolites in the Changning-Menglian Belt, constitute the ocean-ridge volcanic rock, ophiolite-arc rock-magmatic rock belts which are distributed in pairs, indicating that the Lancangjiang oceanic crust subducted eastwards. This result is of great importance in constraining the evolution of the paleo-Tethys in the Lancangjiang Belt.展开更多
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite...The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilitesor spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphicgrades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. Thisindicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area haveformed as a result of Caledonian regional metamorphism. We suggest that the previously denotedspilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks.The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite faciesfor the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpellyite to lowergreenschist facies for the lower part of the Middle Ordovician volcanic rocks, and lower greenschistfacies for the Lower Ordovician volcanic rocks. The P-T conditions are estimated as T = 240 - 290deg C and P = 1.5-4.5 kbar for the lower part of the Middle Ordovician rocks, and T = approx 300 degC for the Lower Ordovician rocks. The variations of mineral assemblages occurring at differentdomains of the volcanic rocks were controlled by the variations of the effective bulk composition inthose domains during metamorphism. The geochemical characteristics of Mg-Al chromite in theMayaxueshan volcanic rocks are consistent with an origin of island arc environment.展开更多
Deep crustal rocks of the Early Proterozoic orogenic belt (DCR)in Daqingshan area mainly included the synorogenicmetamorphic khondalite series and reworked Archeanbasement granulites. During the early stage about 1900...Deep crustal rocks of the Early Proterozoic orogenic belt (DCR)in Daqingshan area mainly included the synorogenicmetamorphic khondalite series and reworked Archeanbasement granulites. During the early stage about 1900~1800 Ma, the DCR consisted of five huge slices which obducted over and stacked up along a series of hightemperature shear zone (HTSZ), and were subsequently uplifted from the deep crustal level to the middle one accompanied with granuliteamphibolite facies retrometamorphic reworking in HTSZ. From 1800~1700 Ma, some slices and HTSZ mentioned above were oveprinted by several lowtemperature shear zone (LTSZ), of which the lowangle oblique thrusts caused these DCR to uplift again from the middle crustal level to the shallow one, and experienced retrometamorphic reworking of greenschist facies. These two stages of uplifting processes should be included in an entire Early Proterozoic orogenic cycle.展开更多
This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petroche...This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.展开更多
The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north ...The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.展开更多
The Proterozoic metasedimentary rocks of the Yaounde Group on the northern edge of the Congo Shield in Central Africa were investigated to understand their provenance and depositional environment.Petrography,geochemis...The Proterozoic metasedimentary rocks of the Yaounde Group on the northern edge of the Congo Shield in Central Africa were investigated to understand their provenance and depositional environment.Petrography,geochemistry,and field evidence helped to subdivide the metasediments into paragneiss,mica schist,chlorite schist,and quartzite which were derived from greywacke,shale,quartz arenite,litharenite protoliths.They are immature with some mature samples,moderately weathered and reworked Neo-and Post-Archean metasediments.Rare earth element signatures(Chondrite Eu/Eu^(*)≤1),enrichment of light rare earth elements over the heavy ones,and the La/Sc ratio(>0.7)are compatible with those of the intermediate and felsic sources from the upper continental crust.These metasediments were deposited in the continental arc setting and have evolved during Proterozoic times according to the Wilson cycle to form the West Gondwana including NE Brazil.展开更多
The Lenghu tectonic belt is located at or near the northern margin in the Qaidam Basin,which is an intracontinental composite basin evolved during the Mesozoic and Cenozoic epochs.The Lower Jurassic is considered a go...The Lenghu tectonic belt is located at or near the northern margin in the Qaidam Basin,which is an intracontinental composite basin evolved during the Mesozoic and Cenozoic epochs.The Lower Jurassic is considered a good source rock with a wide distribution.Since the deposit of the Lower Jurassic hydrocarbon source rock,the basin has undergone many tectonic events of subsidence and uplift.The source rocks in the Lengke-1 well,have experienced a complicated tectonic-burial history during which different hydrocarbon generation(HG) evolutions have taken place.We have investigated the history of burying,heating and hydrocarbon generation of the Lower Jurassic source rocks,not just on the basis of tectonic disturbance and deep burial,but also from new studies in fluid inclusion measurements and the application of numerical simulation with EASY%Ro.Our study reveals the evolution process,tectonic episodes and the strength of the HG of the Jurassic source rock.We conclude that twice HG processes have taken place since the Lower Jurassic formation and infer from that the important conclusion that more HG of the Lower Jurassic source rock took place during the Eocene-Miocene epochs.Finally,we discuss the oil and gas tarp formation and destruction in the Lenghu tectonic belt and point out that more attention should be paid to the thrust faults,which formed during the late Himalayan epoch.展开更多
Within southern Mali, the Syama belt constitutes a linear major structure-oriented N-S, which host several gold deposits (e.g., Syama and Tabakoroni) and prospect areas (e.g. Tellem). The Syama Belt is formed by magma...Within southern Mali, the Syama belt constitutes a linear major structure-oriented N-S, which host several gold deposits (e.g., Syama and Tabakoroni) and prospect areas (e.g. Tellem). The Syama Belt is formed by magmatic rocks (basalts, lamprophyres, andesites, dacites and microgranites);sedimentary rocks (shales) and volcano-sedimentary rocks (pyroclastics). The magmatic rocks are divided into two main volcanic series: tholeiitic affinity rocks (basalts and lamprophyres) and calc-alkaline affinity (andesites) that are the most evolved. The field relationships between rocks of these two series suggest that the calc-alkaline series are younger the tholeiitic series. These tholeiitic series present the Mid-Ocean Ridge Basalt (MORB) affinity whereas the calc-alkaline series would be linked to an island arc-type. This coexistence is not an isolated case within the West African Craton (WAC). Otherwise, the Syama belt has all the characteristics of other belts, within which a number of gold deposits are developed, in the WAC.展开更多
The newly discovered three alkali\|rich intrusive rock belts in the Mt. Kunlun Mt. Altun region of southern Xinjiang are the Lapeiquan\|Yitunbulak alkali\|rich intrusive rock belt, the Gez\|Taxkorgan alkali\|rich intr...The newly discovered three alkali\|rich intrusive rock belts in the Mt. Kunlun Mt. Altun region of southern Xinjiang are the Lapeiquan\|Yitunbulak alkali\|rich intrusive rock belt, the Gez\|Taxkorgan alkali\|rich intrusive rock belt and the Beilisai\|Abulash alkali\|rich intrusive rock belt. The former two belts were formed during the Yanshanian period, and the third one was formed during the Himalayan period, which is the youngest alkali\|rich intrusive rock belt in China. The discovery of the alkali\|rich intrusive rock belts is of great significance in shedding light on the history of tectono\|magmatic activities in this region.展开更多
基金funded by the National Natural Science Foundation of China(grant No. 40634022)
文摘Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.
基金supported by the Chinese National Key Scientific Program--the Chinese Continental Seientitle Drilling Projectthe National Natural Science Foundation of China(NSFC Grant 49772142)1:250000 Regional Geological Survey of the Lianyungang Sheet(I50C002004)of P.R.China and the Laboratory of Continental Dynamics of the Land and Resource Ministry of China
文摘The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud
基金Financial support for this study was jointly provided by the Hundred Talents Project of Ministry of Land and Resources of China, the Ten-Hundred-Thousand Talent Project of Guangxi (Grant No. 2006218)Guangxi Science Foundation (Grant No.0728089)+1 种基金Institute of Mineral Resources, Chinese Academy of Geological Sciences (Grant No. K0914)China Geological Survey (Grant No. 201111020 and1212010510805)
文摘The Napo-Qinzhou Tectonic Belt (NQTB) lies at the junction of the Yangtze, Cathaysia and Indochina (North Vietnam) Blocks, which is composed of five major lithotectonic subunits: the Qinzhou-Fangcheng Suture Zone (QFSZ), the Shiwandashan Basin (SB), the Pingxiang-Nanning Suture Zone (PNSZ), the Damingshan Block (DB) and the Babu-Lingma Suture Zone (BLSZ). On the basis of geochemical compositions, the Permian mafic igneous rocks can be divided into three distinct groups: (1) mafic igneous rocks (Group 1) from the Longjing region in the PNSZ and Hurun region in the BLSZ, which are characterized by intermediate Ti, P and Zr with low Ni and Cr contents; (2) mafic igneous rocks (Group 2) from the Naxiao and Chongzuo region in the DB, characterized by low-intermediate Ti, P and Zr with high Ni and Cr concentrations; and (3) mafic igneous rocks (Group 3) from the Siming region in the Jingxi carbonate platform of the northwestern margin of the NQTB, with intermediate-high Ti, P and Zr and low Ni and Cr contents. The Group 1 rocks yield a weighted mean 206 Pb/ 238 U age of 250.5±2.8 Ma and are geochemically similar to basalts occurring in back-arc basin settings. The Group 2 rocks exhibit geochemical features to those basalts in island arcs, whereas the Group 3 rocks show geochemical similarity to that of ocean island basalts. All three groups are characterized by relatively low ε Nd (t) values (-2.61 to +1.10) and high initial 87 Sr/ 86 Sr isotopic ratios (0.705309-0.707434), indicating that they were derived from a subduction-modified lithospheric mantle and experienced assimilation, fractional crystallization, and crustal contamination or mixing during magmatic evolution. Accordingly, we propose the existence of an arc-back arc basin system that developed along the NQTB at the border of SW Guangxi Province (SW China) and northern Vietnam, and it was formed by continued northwestward subduction of the Cathaysian (or Yunkai) Block under the Yangtze Block, and northeastward subduction of the Indochina Block beneath the Yangtze Block during Permian time.
基金supported by the National Natural Science Foundation of China (41872203, 41872194)the China Geological Survey Project (DD2016041–16,DD20190038–2)
文摘In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision.
基金supported by the National Key R&D Program of China (Nos. 2018YFC0604006, 2017YFC0601204)the National Basic Research Program of China (973 Program, No. 2014CB440803)
文摘The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship between these rocks and the iron deposits are studied.Geochemically,the ore-hosting volcanic rocks are sodiumrich(the averages of Na2O and Na2O/K2O are 4.31 wt.%and 8.56,respectively)and belong to the calc-alkaline series.They are enriched in LREEs and LILEs(Ba,U,K,and Sr),but depleted in HFSEs(Nb,Ta,and Ti).SHRIMP zircon U–Pb dating of the crystal tuff in the Aqishan Formation and the dacite in the Tugutu Bulak Formation yields ages of 337.52.3 Ma(n?15,MSWD?0.85)and 313.03.3 Ma(n?13,MSWD?0.74),respectively,indicating that the sodium-rich volcanic rocks formed from the early–late Carboniferous.Electron microprobe data from plagioclases demonstrate that albites and/or oligoclases were formed in the basic–intermediate–acid volcanic rocks.Two stages of albitization are identified,and the latter is likely attributed to the dissolution of iron in the Aqishan–Yamansu belt.The sodium-rich volcanic rocks probably formed by the interaction between volcanic lava and seawater after volcanoes erupted on the seafloor;meanwhile,the albites formed by element substitution in a low-metamorphic environment.The spatiotemporal coupling relationship between sodium-rich volcanic rocks and iron deposits in the Aqishan–Yamansu belt is favorable.Iron dissolved from the dark minerals of basic–intermediate volcanic rocks through sodium metasomatism is one of the material sources for the iron deposits.
文摘Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.
基金supported by the Key Project(No.9502010)of the former Chinese Ministry of Geology and Mineral Resources.
文摘A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids.
基金financially supported by the Geological Survey Project of China Geological Survey (grant no.1212011014032,1212011220134)
文摘The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.
基金supported by the Natural Science Foundation of China(No.41203039)
文摘1 Introduction Daxinganling region is one of the most important nonferrous metal metallogenetic province(Wu et al.,2011;Li et al.,2014).The northern Daxinganling was a geological blank area in China formerly(Li et al.,2017).However,the region has a huge resource potential.Forty metal deposits have been found in the area recently,with
文摘The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).
文摘Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.
文摘Geochemical characteristics of the Upper Permian (P-2) continental marginal arc volcanic rocks are described, which have been found recently around the areas of Xiaodingxi and Zangli on the eastern side of the Yunxian|Lincang granite, in terms of rock assemblage, petrochemistry, REE, trace elements, Pb isotopes, geotectonic environment and so on. The volcanic rock assemblage is dominated by basalt-andesite-dacite, with minor trachyte andecite-trachyte; the volcanic rock series is predominated by the calc-alkaline series, with minor tholleiite series and alkaline series rocks; the volcanic rocks are characterized by high Al-2O-3 and low TiO-2, with K-2O contents showing extremely strong polarity; the REE distribution patterns are characterized by LREE enrichment and right-inclined type; trace elements and large cation elements are highly enriched, Ti and Cr are depleted, and P and Nb are partially depleted; the Pb composition is of the Gondwana type; the petrochemical points mostly fall within the field of island-arc volcanic rocks, in consistency with the projection of data points of continental marginal volcanic rocks in the southern segment of the South Lancangjiang Belt and the North Lancangjiang Belt. This continental marginal arc volcanic rock belt, together with the ocean-ridge and ocean-island volcanic rocks and ophiolites in the Changning-Menglian Belt, constitute the ocean-ridge volcanic rock, ophiolite-arc rock-magmatic rock belts which are distributed in pairs, indicating that the Lancangjiang oceanic crust subducted eastwards. This result is of great importance in constraining the evolution of the paleo-Tethys in the Lancangjiang Belt.
文摘The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilitesor spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphicgrades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. Thisindicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area haveformed as a result of Caledonian regional metamorphism. We suggest that the previously denotedspilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks.The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite faciesfor the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpellyite to lowergreenschist facies for the lower part of the Middle Ordovician volcanic rocks, and lower greenschistfacies for the Lower Ordovician volcanic rocks. The P-T conditions are estimated as T = 240 - 290deg C and P = 1.5-4.5 kbar for the lower part of the Middle Ordovician rocks, and T = approx 300 degC for the Lower Ordovician rocks. The variations of mineral assemblages occurring at differentdomains of the volcanic rocks were controlled by the variations of the effective bulk composition inthose domains during metamorphism. The geochemical characteristics of Mg-Al chromite in theMayaxueshan volcanic rocks are consistent with an origin of island arc environment.
文摘Deep crustal rocks of the Early Proterozoic orogenic belt (DCR)in Daqingshan area mainly included the synorogenicmetamorphic khondalite series and reworked Archeanbasement granulites. During the early stage about 1900~1800 Ma, the DCR consisted of five huge slices which obducted over and stacked up along a series of hightemperature shear zone (HTSZ), and were subsequently uplifted from the deep crustal level to the middle one accompanied with granuliteamphibolite facies retrometamorphic reworking in HTSZ. From 1800~1700 Ma, some slices and HTSZ mentioned above were oveprinted by several lowtemperature shear zone (LTSZ), of which the lowangle oblique thrusts caused these DCR to uplift again from the middle crustal level to the shallow one, and experienced retrometamorphic reworking of greenschist facies. These two stages of uplifting processes should be included in an entire Early Proterozoic orogenic cycle.
基金This research was granted by the National Natural Science Foundation of China (Grant No. 40372105).
文摘This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.
基金financially supported by the National Nature Science Foundation of China(Grant No.41772233,41272220)the China Geological Survey(Grant No.DD20189613)grants from the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J1708)
文摘The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.
文摘The Proterozoic metasedimentary rocks of the Yaounde Group on the northern edge of the Congo Shield in Central Africa were investigated to understand their provenance and depositional environment.Petrography,geochemistry,and field evidence helped to subdivide the metasediments into paragneiss,mica schist,chlorite schist,and quartzite which were derived from greywacke,shale,quartz arenite,litharenite protoliths.They are immature with some mature samples,moderately weathered and reworked Neo-and Post-Archean metasediments.Rare earth element signatures(Chondrite Eu/Eu^(*)≤1),enrichment of light rare earth elements over the heavy ones,and the La/Sc ratio(>0.7)are compatible with those of the intermediate and felsic sources from the upper continental crust.These metasediments were deposited in the continental arc setting and have evolved during Proterozoic times according to the Wilson cycle to form the West Gondwana including NE Brazil.
基金supported by the Natural Oil & Gas Stratagem Tap of China
文摘The Lenghu tectonic belt is located at or near the northern margin in the Qaidam Basin,which is an intracontinental composite basin evolved during the Mesozoic and Cenozoic epochs.The Lower Jurassic is considered a good source rock with a wide distribution.Since the deposit of the Lower Jurassic hydrocarbon source rock,the basin has undergone many tectonic events of subsidence and uplift.The source rocks in the Lengke-1 well,have experienced a complicated tectonic-burial history during which different hydrocarbon generation(HG) evolutions have taken place.We have investigated the history of burying,heating and hydrocarbon generation of the Lower Jurassic source rocks,not just on the basis of tectonic disturbance and deep burial,but also from new studies in fluid inclusion measurements and the application of numerical simulation with EASY%Ro.Our study reveals the evolution process,tectonic episodes and the strength of the HG of the Jurassic source rock.We conclude that twice HG processes have taken place since the Lower Jurassic formation and infer from that the important conclusion that more HG of the Lower Jurassic source rock took place during the Eocene-Miocene epochs.Finally,we discuss the oil and gas tarp formation and destruction in the Lenghu tectonic belt and point out that more attention should be paid to the thrust faults,which formed during the late Himalayan epoch.
文摘Within southern Mali, the Syama belt constitutes a linear major structure-oriented N-S, which host several gold deposits (e.g., Syama and Tabakoroni) and prospect areas (e.g. Tellem). The Syama Belt is formed by magmatic rocks (basalts, lamprophyres, andesites, dacites and microgranites);sedimentary rocks (shales) and volcano-sedimentary rocks (pyroclastics). The magmatic rocks are divided into two main volcanic series: tholeiitic affinity rocks (basalts and lamprophyres) and calc-alkaline affinity (andesites) that are the most evolved. The field relationships between rocks of these two series suggest that the calc-alkaline series are younger the tholeiitic series. These tholeiitic series present the Mid-Ocean Ridge Basalt (MORB) affinity whereas the calc-alkaline series would be linked to an island arc-type. This coexistence is not an isolated case within the West African Craton (WAC). Otherwise, the Syama belt has all the characteristics of other belts, within which a number of gold deposits are developed, in the WAC.
文摘The newly discovered three alkali\|rich intrusive rock belts in the Mt. Kunlun Mt. Altun region of southern Xinjiang are the Lapeiquan\|Yitunbulak alkali\|rich intrusive rock belt, the Gez\|Taxkorgan alkali\|rich intrusive rock belt and the Beilisai\|Abulash alkali\|rich intrusive rock belt. The former two belts were formed during the Yanshanian period, and the third one was formed during the Himalayan period, which is the youngest alkali\|rich intrusive rock belt in China. The discovery of the alkali\|rich intrusive rock belts is of great significance in shedding light on the history of tectono\|magmatic activities in this region.