The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate...Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.展开更多
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.