High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar...High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar-type,whose thermal sensitive area has to be perpendicular to the test environment,and therefore affects the thermal fluids pattern or loses accuracy.In order to address this problem,recent studies have developed three-dimensional probe-type TFTCs,which can be set parallel to the test environment.Nevertheless,the probe-type TFTCs are limited by their measurement threshold and poor stability at high temperatures.To address these issues,in this study,we propose a novel probe-type TFTC with a sandwich structure.The sensitive layer is compounded with indium oxide doped zinc oxide and fabricated using screen-printing technology.With the protection of sandwich structure on electrode film,the sensor demonstrates robust high-temperature stability,enabling continuous working at 1200℃ above 5 h with a low drift rate of 2.3℃·h^(−1).This sensor exhibits a high repeatability of 99.3% when measuring a wide range of temperatures,which is beyond the most existing probe-type TFTCs reported in the literature.With its excellent high-temperature performance,this temperature sensor holds immense potentials for enhancing equipment safety in the aerospace engineering and ensuring product quality in the steel metallurgy industry.展开更多
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato...Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.展开更多
With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are ...With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.展开更多
Developing a calibration and collection system of platinum resistance temperature sensor using Python language environment can read the information returned by the serial port and automatically generate an"Temper...Developing a calibration and collection system of platinum resistance temperature sensor using Python language environment can read the information returned by the serial port and automatically generate an"Temperature Sensor Calibration Record Table"excel table with the current date as the file name.It can collect data from 10 platinum resistance temperature sensors at once,achieving automation and improving work efficiency.展开更多
A novel temperature sensor is developed and presented especially for the purpose of on-line thermal monitoring of VLSI chips.This sensor requires very small silicon area and low power consumption,and the simulation re...A novel temperature sensor is developed and presented especially for the purpose of on-line thermal monitoring of VLSI chips.This sensor requires very small silicon area and low power consumption,and the simulation results show that its accuracy is in the order of 0.8℃.The proposed sensor can be easily implemented using regular CMOS process technologies,and can be easily integrated to any VLSI circuits to increase their reliability.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature ca...A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications.展开更多
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring...In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.展开更多
This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40×1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwi...This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40×1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwiched between two polyimide layers as flexible substrates is developed. The two polyimide layers are deposited on top of a thin aluminum layer, which serves as a sacrificial layer such that the flexible skin can be released by metal etching and peeled off easily. The flexible skin with a temperature sensor array has a high mechanical flexibility and can be handily attached on a highly curved surface to detect tiny temperature distribution inside a small area. The sensor array shows a linear output and has a sensitivity of 7.5 mV/°C (prior to amplifiers) at a drive current of 1 mA. To demonstrate its applications, two examples have been demonstrated, including measurement of temperature distribution around a micro heater of a micro PCR (polymerase chain reaction) chip for DNA amplification and detection of separation point for flow over a circular cylinder. The development of the flexible skin with a temperature sensor array may be crucial for measuring temperature distribution on any curved surface in the fields of aerodynamics, space exploration, auto making and biomedical applications etc.展开更多
Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coate...Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile, the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG)sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280℃,which was much better than that of conventional FBG sensor.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-c...A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-core fiber(NCF)was coated with a silver(Ag) film, and the other part was coated with a silver/polydimethylsiloxane(Ag/PDMS) composite film to stimulate the SPR effect. Due to the two heterogeneous films, two dips appeared in the transmission spectrum and were used to achieve the dual-parameter measurements. The experimental results showed that the RI sensitivity reached 2121.43 nm/RIU and 0 nm/RIU, while the temperature sensitivity reached-0.32 nm/℃ and-2.21 nm/℃ for the two dips,respectively. Based on the obtained transfer matrix, the measurements of RI and temperature could be demodulated. This designed sensor showed the merits of simple structure, easy to implement, and high sensitivity, demonstrating application prospects in dual-parameter monitoring.展开更多
The development of wearable technologies promotes the research of flexible sensors.It is hoped that a flexible sensor can collect different physiological data,such as temperature and respiratory rate(RR).The temperatu...The development of wearable technologies promotes the research of flexible sensors.It is hoped that a flexible sensor can collect different physiological data,such as temperature and respiratory rate(RR).The temperature of the exhaled gas is generally higher than that in the air,and the periodic change of temperature is related to the respiratory rate.In this work,we use platinum fiber and spandex fiber to prepare yarn-based temperature sensor with high tensile performance through hollow spindle wrapping spinning technology.After the measurement,the sensitivity of the sensor can reach at least 3.18×10^(-3)℃^(-1).We use the sensor and ordinary fabric mask to prepare a sensor mask that can monitor human respiratory signals to explore the performance of the sensor in RR measurement.The experimental results show that when measuring human RR,the yarn-based temperature sensor can accurately distinguish different respiratory states such as normal breathing,deep breathing,and rapid breathing while speaking.It is suggested that yarn-based temperature sensors can be used in medical fields such as real-time respiratory detection and temperature measurement.展开更多
A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as ...A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.展开更多
In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by compre...In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.展开更多
An E-type high-precision temperature sensor, which is adopted for upper air meteorology, was proposed in this paper. A computational fluid dynamics(CFD) method was implemented to analyze temperature rise induced by so...An E-type high-precision temperature sensor, which is adopted for upper air meteorology, was proposed in this paper. A computational fluid dynamics(CFD) method was implemented to analyze temperature rise induced by solar radiation at different altitudes and solar radiation intensities. A temperature rise correction equation was obtained by fitting the CFD results using a Broyden-Fletcher-Goldfarb-Shanno(BFGS) method. To verify the performance of the temperature sensor, an experimental platform was constructed. Through simulations and experiments, the relationship among the altitude, solar radiation intensity and radiation temperature rise was obtaned. The root-mean-square error(RMSE) between the temperature rise derived from the correction equation and that derived from the experiments is 0.013 K. The sample determination coefficient r2 of the solar radiation error correction equation is 0.9975.展开更多
A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at h...A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.展开更多
A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical f...A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical fiber. Small changes in the refractive index of coating film greatly influence the power of evanescent fields, which modulate the transmission optical power in the waist region. The range of temperature measured is from -20℃ to 70 ℃. The results show that the temperature sensor has high temperature sensitivity (0.012 mW/℃) and good repeatability.展开更多
Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,whi...Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,which uses capacitive micromachined ultrasonic transducer(CMUT)as the sensing element.A lumped electro-mechanical-thermal model was established to show its working principle for temperature measurement.The theoretical model explicitly explains the thermally induced changes in the resonant frequency of the CMUT.Then,the finite element method was used to further investigate the sensing performance.The numerical results agree well with the established analytical model qualitatively.The numerical results show that the resonant frequency varies linearly with the temperature over the range of 20℃to 140℃ at the first four vibrating modes.However,the first order vibrating mode shows a higher sensitivity than the other three higher modes.When working at the first order vibrating mode,the temperature coefficient of the resonance frequency(TCf)can reach as high as-1114.3 ppm/℃ at a bias voltage equal to 90%of the collapse voltage of the MCUT.The corresponding nonlinear error was as low as 1.18%.It is discovered that the sensing sensitivity is dependent on the applied bias voltages.A higher sensitivity can be achieved by increasing the bias voltages.展开更多
A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and t...A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.展开更多
基金supports from the National Key Research and Development Program of China(2022YFB3207502).
文摘High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar-type,whose thermal sensitive area has to be perpendicular to the test environment,and therefore affects the thermal fluids pattern or loses accuracy.In order to address this problem,recent studies have developed three-dimensional probe-type TFTCs,which can be set parallel to the test environment.Nevertheless,the probe-type TFTCs are limited by their measurement threshold and poor stability at high temperatures.To address these issues,in this study,we propose a novel probe-type TFTC with a sandwich structure.The sensitive layer is compounded with indium oxide doped zinc oxide and fabricated using screen-printing technology.With the protection of sandwich structure on electrode film,the sensor demonstrates robust high-temperature stability,enabling continuous working at 1200℃ above 5 h with a low drift rate of 2.3℃·h^(−1).This sensor exhibits a high repeatability of 99.3% when measuring a wide range of temperatures,which is beyond the most existing probe-type TFTCs reported in the literature.With its excellent high-temperature performance,this temperature sensor holds immense potentials for enhancing equipment safety in the aerospace engineering and ensuring product quality in the steel metallurgy industry.
文摘Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.
基金support from Liao Ning Revitalization Talents Program(XLYC1907144)Dalian Youth Science and Technology Star Project Support Program(No.2017RQ104)+6 种基金National Key Research and Development Program of China(No.2020YFB0311600)National Natural Science Foundation of China(Grant Nos.22125903,51872283,22075279)Liaoning BaiQianWan Talents Program(Grant XLYC1807153)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,2021009).
文摘With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.
基金Supported by the Scientific Research and Technology Development Project of Wuzhou Meteorological Bureau(WUQIKEZ2021009).
文摘Developing a calibration and collection system of platinum resistance temperature sensor using Python language environment can read the information returned by the serial port and automatically generate an"Temperature Sensor Calibration Record Table"excel table with the current date as the file name.It can collect data from 10 platinum resistance temperature sensors at once,achieving automation and improving work efficiency.
文摘A novel temperature sensor is developed and presented especially for the purpose of on-line thermal monitoring of VLSI chips.This sensor requires very small silicon area and low power consumption,and the simulation results show that its accuracy is in the order of 0.8℃.The proposed sensor can be easily implemented using regular CMOS process technologies,and can be easily integrated to any VLSI circuits to increase their reliability.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
文摘A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications.
基金supported by National Natural Science Foundation of China(Grant No.50775210)Liaoning Provincial Natural Science Foundation of China(Grant No.20062143)Liaoning Provincial Universities Science and Technology Program of China(Grant No.05L023)
文摘In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.
文摘This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40×1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwiched between two polyimide layers as flexible substrates is developed. The two polyimide layers are deposited on top of a thin aluminum layer, which serves as a sacrificial layer such that the flexible skin can be released by metal etching and peeled off easily. The flexible skin with a temperature sensor array has a high mechanical flexibility and can be handily attached on a highly curved surface to detect tiny temperature distribution inside a small area. The sensor array shows a linear output and has a sensitivity of 7.5 mV/°C (prior to amplifiers) at a drive current of 1 mA. To demonstrate its applications, two examples have been demonstrated, including measurement of temperature distribution around a micro heater of a micro PCR (polymerase chain reaction) chip for DNA amplification and detection of separation point for flow over a circular cylinder. The development of the flexible skin with a temperature sensor array may be crucial for measuring temperature distribution on any curved surface in the fields of aerodynamics, space exploration, auto making and biomedical applications etc.
基金the National Natural Science Foundation of China(No.60777038).
文摘Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile, the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG)sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280℃,which was much better than that of conventional FBG sensor.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
基金the Natural Science Foundation of Hebei Province, China (Grant No. F2021203112)the National Natural Science Foundation of China (Grant No. 12074331)+1 种基金the National Key Research and Development Program of China (Grant No. 2019YFB2204001)Basic Scientific Research Funds for universities in Hebei Province, China (Grant No. JQN2021019)。
文摘A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-core fiber(NCF)was coated with a silver(Ag) film, and the other part was coated with a silver/polydimethylsiloxane(Ag/PDMS) composite film to stimulate the SPR effect. Due to the two heterogeneous films, two dips appeared in the transmission spectrum and were used to achieve the dual-parameter measurements. The experimental results showed that the RI sensitivity reached 2121.43 nm/RIU and 0 nm/RIU, while the temperature sensitivity reached-0.32 nm/℃ and-2.21 nm/℃ for the two dips,respectively. Based on the obtained transfer matrix, the measurements of RI and temperature could be demodulated. This designed sensor showed the merits of simple structure, easy to implement, and high sensitivity, demonstrating application prospects in dual-parameter monitoring.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19PJC002)+2 种基金Fundamental Research Funds for the Central Universities of ministry of Education of China(Nos.2232017D-12)Key Laboratory of Textile Science and Technology(Donghua University),Ministry of Education,China(No.KLTST201623)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-005388)。
文摘The development of wearable technologies promotes the research of flexible sensors.It is hoped that a flexible sensor can collect different physiological data,such as temperature and respiratory rate(RR).The temperature of the exhaled gas is generally higher than that in the air,and the periodic change of temperature is related to the respiratory rate.In this work,we use platinum fiber and spandex fiber to prepare yarn-based temperature sensor with high tensile performance through hollow spindle wrapping spinning technology.After the measurement,the sensitivity of the sensor can reach at least 3.18×10^(-3)℃^(-1).We use the sensor and ordinary fabric mask to prepare a sensor mask that can monitor human respiratory signals to explore the performance of the sensor in RR measurement.The experimental results show that when measuring human RR,the yarn-based temperature sensor can accurately distinguish different respiratory states such as normal breathing,deep breathing,and rapid breathing while speaking.It is suggested that yarn-based temperature sensors can be used in medical fields such as real-time respiratory detection and temperature measurement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61275059 and 61307062)
文摘A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.
基金supported by the National Natural Science Foundation of China(Grant No.61705025)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F2018027)+3 种基金partially supported by Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyj-msxmX0431 and cstc2018jcyjAX0817)the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.
文摘An E-type high-precision temperature sensor, which is adopted for upper air meteorology, was proposed in this paper. A computational fluid dynamics(CFD) method was implemented to analyze temperature rise induced by solar radiation at different altitudes and solar radiation intensities. A temperature rise correction equation was obtained by fitting the CFD results using a Broyden-Fletcher-Goldfarb-Shanno(BFGS) method. To verify the performance of the temperature sensor, an experimental platform was constructed. Through simulations and experiments, the relationship among the altitude, solar radiation intensity and radiation temperature rise was obtaned. The root-mean-square error(RMSE) between the temperature rise derived from the correction equation and that derived from the experiments is 0.013 K. The sample determination coefficient r2 of the solar radiation error correction equation is 0.9975.
基金This project is supported by European Community Project, National NaturalScience Foundation of China (No.50437010) and Aviation Science Founda-tion of China (No.99C52072).
文摘A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Universities Foster Innovation Foundation Projects for Major Projects in Ministry of Education (Grant No.708041)
文摘A temperature sensor is demonstrated and fabricated by coating the single-mode tapered optical fiber with temperature-sensitive silicone rubber. It works on the change of the evanescent fields in the tapered optical fiber. Small changes in the refractive index of coating film greatly influence the power of evanescent fields, which modulate the transmission optical power in the waist region. The range of temperature measured is from -20℃ to 70 ℃. The results show that the temperature sensor has high temperature sensitivity (0.012 mW/℃) and good repeatability.
基金supported in part by the National Natural Science Foundation of China ( 51375378, 91323303 )the 13th Fok Ying Tung Education Foundation ( 132010 )+5 种基金the Science and Technology Research Project of Shaanxi (2012KJXX-01)the Fundamental Research Funds for the Central Universities ( 2012jdgz08 )the Major National Science and Technology Project ( 2011ZX04004-061 )the 111 Program ( B12016 )National Key Scientific Instrument and Equipment Development Projects of China ( 2012YQ03026101 )The China Scholarship Council
文摘Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,which uses capacitive micromachined ultrasonic transducer(CMUT)as the sensing element.A lumped electro-mechanical-thermal model was established to show its working principle for temperature measurement.The theoretical model explicitly explains the thermally induced changes in the resonant frequency of the CMUT.Then,the finite element method was used to further investigate the sensing performance.The numerical results agree well with the established analytical model qualitatively.The numerical results show that the resonant frequency varies linearly with the temperature over the range of 20℃to 140℃ at the first four vibrating modes.However,the first order vibrating mode shows a higher sensitivity than the other three higher modes.When working at the first order vibrating mode,the temperature coefficient of the resonance frequency(TCf)can reach as high as-1114.3 ppm/℃ at a bias voltage equal to 90%of the collapse voltage of the MCUT.The corresponding nonlinear error was as low as 1.18%.It is discovered that the sensing sensitivity is dependent on the applied bias voltages.A higher sensitivity can be achieved by increasing the bias voltages.
基金funded by the National Natural Science Foundation of China under Grant No. 60677031 and 60577043the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060280001+1 种基金Shanghai Education Commission under Grant No. 06AZ032, Chenguang Program under Grant No. 2007CG54Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 07DZ22024 and 075307017
文摘A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.