The synoptic circulation over Saudi Arabia is complicated and frequently governed by the effect of large-scale pressure systems. In this work, we used NCEP–NCAR global data to illustrate the relationship between clim...The synoptic circulation over Saudi Arabia is complicated and frequently governed by the effect of large-scale pressure systems. In this work, we used NCEP–NCAR global data to illustrate the relationship between climatic variables and the main pressure systems that affect the weather and climate of Saudi Arabia, and also to investigate the influence of these pressure systems on surface air temperature(SAT) and rainfall over the region in the winter season. It was found that there are two primary patterns of pressure that influence the weather and climate of Saudi Arabia. The first occurs in cases of a strengthening Subtropical High(Sub H), a weakening Siberian High(Sib H), a deepening of the Icelandic Low(Ice L), or a weakening of the Sudanese Low(Sud L). During this pattern, the Sub H combines with the Sib H and an obvious increase of sea level pressure(SLP) occurs over southern European, the Mediterranean, North Africa, and the Middle East. This belt of high pressure prevents interaction between midlatitude and extratropical systems, which leads to a decrease in the SAT,relative humidity(RH) and rainfall over Saudi Arabia. The second pattern occurs in association with a weakening of the Sub H, a strengthening of the Sib H, a weakening of the Ice L, or a deepening of the Sud L. The pattern arising in this case leads to an interaction between two different air masses: the first(cold moist) air mass is associated with the Mediterranean depression travelling from west to east, while the second(warm moist) air mass is associated with the northward oscillation of the Sud L and its inverted V-shape trough. The interaction between these two air masses increases the SAT, RH and the probability of rainfall over Saudi Arabia, especially over the northwest and northeast regions.展开更多
基金funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 155-003-D1433)the DSR for their technical and financial support
文摘The synoptic circulation over Saudi Arabia is complicated and frequently governed by the effect of large-scale pressure systems. In this work, we used NCEP–NCAR global data to illustrate the relationship between climatic variables and the main pressure systems that affect the weather and climate of Saudi Arabia, and also to investigate the influence of these pressure systems on surface air temperature(SAT) and rainfall over the region in the winter season. It was found that there are two primary patterns of pressure that influence the weather and climate of Saudi Arabia. The first occurs in cases of a strengthening Subtropical High(Sub H), a weakening Siberian High(Sib H), a deepening of the Icelandic Low(Ice L), or a weakening of the Sudanese Low(Sud L). During this pattern, the Sub H combines with the Sib H and an obvious increase of sea level pressure(SLP) occurs over southern European, the Mediterranean, North Africa, and the Middle East. This belt of high pressure prevents interaction between midlatitude and extratropical systems, which leads to a decrease in the SAT,relative humidity(RH) and rainfall over Saudi Arabia. The second pattern occurs in association with a weakening of the Sub H, a strengthening of the Sib H, a weakening of the Ice L, or a deepening of the Sud L. The pattern arising in this case leads to an interaction between two different air masses: the first(cold moist) air mass is associated with the Mediterranean depression travelling from west to east, while the second(warm moist) air mass is associated with the northward oscillation of the Sud L and its inverted V-shape trough. The interaction between these two air masses increases the SAT, RH and the probability of rainfall over Saudi Arabia, especially over the northwest and northeast regions.