期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions
1
作者 Yiping WU Yuzhen JIA +3 位作者 Sha Zhang Yu Liu Hanqing Xiong Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2891-2900,共10页
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti... Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied. 展开更多
关键词 Mg-Gd-Y alloy Elevated temperature compression Flow softening Dynamic recrystallization
下载PDF
Z-D Relationship during Compression atConstant Temperature on TC11 Alloy
2
作者 白秉哲 杨鲁义 +1 位作者 张柏清 韩其勇 《Rare Metals》 SCIE EI CAS CSCD 1996年第2期110-115,共6页
The dynamic evolution of microstructure and the characteristics of deformation , as well as the relationshipbetween them have ben studied for TCll alloy with different original conditions, including as-cast, as-rolled... The dynamic evolution of microstructure and the characteristics of deformation , as well as the relationshipbetween them have ben studied for TCll alloy with different original conditions, including as-cast, as-rolled ,as-forged and as-predeformed on casting, during comparison at constant temperature (CCT). The resultsshow that (1) Micrcotructural process during CCT of cast TCll comprises two stages: (i) Founding ofu dynamic equilibrium ”. Original coarse structure breaks up and becomes equiaxed, while the stras decreasesaccordingly. The microstructure gradually trends towards some kind of “dynamic ellullibrium” morphology;(ii) Keeping of “dynamic equilibrium”. Both stress and micrcostructural morphology preserve stable althoughdeformation continues. (2) The final pouilibrium morphology das not depend on its initial microstructure, buton the parameter Z(T, e) . 展开更多
关键词 TCll alloy compression at constant temperature Z-D
下载PDF
Strain rate-dependent high temperature compressive deformation characteristics of ultrafine-grained pure aluminum produced by ECAP
3
作者 颜莹 齐跃 +1 位作者 陈立佳 李小武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期966-973,共8页
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif... To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures. 展开更多
关键词 equal channel angular pressing(ECAP) pure Al strain rate high temperature compression DEFORMATION damage microstructure
下载PDF
Effect of carbon on high temperature compressive and creep properties of β-stabilized TiA l alloy 被引量:6
4
作者 Can-xu ZHOU Bin LIU +3 位作者 Yong LIU Cong-zhang QIU Hui-zhong LI Yue-hui HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2400-2405,共6页
Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2... Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2Mo(molar fraction,%)alloy were studied through compressive and creep tests.The results show that the carbon addition(0.5%,molar fraction)obviously enhances the high temperature compressive strength and creep resistance of theβ-stabilized Ti?45Al?3Fe?2Mo alloy.A lot of nano-scaled Ti3AlC carbides precipitate in theβ-stabilized alloy and these carbides pin the dislocations,and greatly increase the high temperature properties.At the same time,the carbon addition decreases the amount of?phase,refines the lamellar spacing,and causes solution strengthening,which also contribute to the improvement of the high temperature properties. 展开更多
关键词 TiAl alloy CARBON precipitation high temperature compression high temperature creep
下载PDF
Mechanism of High Temperature Deformation in Cast Ti46Al8.5Nb0.2W Alloy
5
作者 Zicheng Liu, Junpin Lin, Yanli Wang, Zhi Lin, Guoliang Chen State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第4期290-294,共5页
Compression tests A ere conducted in the two phase Ti46Al8.5Nb0.2W alloy with a cast microstructure under the strain rates ranging from 2x10(-5) s(-1) to 10(-2) s(-1) at temperatures ranging front 900degreesC to 1100d... Compression tests A ere conducted in the two phase Ti46Al8.5Nb0.2W alloy with a cast microstructure under the strain rates ranging from 2x10(-5) s(-1) to 10(-2) s(-1) at temperatures ranging front 900degreesC to 1100degreesC. It was found that there exist approximately linear relationships between the flow stress and the logarithm of strain rate at different temperatures. The strain rate dependence was analzed by the thermal activation theory and dislocation climbing is regarded as the controlling mechanism during high temperature compression tests. 展开更多
关键词 Ti46%Al8.5%Nb0.2%W high temperature compression strain rate dislocation climbing
下载PDF
Research on testing method of resin sand high temperature compressive strength 被引量:7
6
作者 Peng Wan Luan-cai Li +1 位作者 Long Zhang Wen-qing Wang 《China Foundry》 SCIE 2016年第5期335-341,共7页
High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperatu... High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperature compressive strength, a self-developed instrument was used to carry out experiments, and the sample shape and size were designed and studied. The results show that a hollow cylinder sample can reflect the strength difference of different resin sands better than a solid cylinder sample, and its data is stable. The experiments selected φ20/5×30 mm as the size of the hollow cylinder samples. The high temperature compressive strengths of phenol-formaldehyde resin coated sand, furan resin self-setting sand, and TEA resin sand were each tested. For the resin sand used for cast steel and cast iron, 1,000 ℃ was selected as the test temperature; for the resin sand used for cast non-ferrous alloy, 800 ℃ was selected as the test temperature; and for all the resin sand samples, 1 min was selected as the holding time. This testing method can truthfully reflect the high temperature performance of three kinds of resin sand; it is reproducible, and the variation coefficients of test values are under 10%. 展开更多
关键词 resin sand high temperature compressive strength hollow cylinder specimens variation coefficient
下载PDF
Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames 被引量:2
7
作者 Xiaodong Li Linzhi Wu +1 位作者 Li Ma Xiangqiao Yan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第2期76-80,共5页
This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CFJCPTSP with novel ... This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CFJCPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CFJCPTSP at different ambient temperatures. The tests of composite sandwich panels are per- formed throughout the temperature range from -90℃ to 180℃. Good agreement is found between theo- retical predictions and experimental measurements. Experimental results indicate that the low tempera- ture increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed. 展开更多
关键词 Pyramidal truss structures temperature Novel reinforced frameOut-of-plane compression
下载PDF
Influence of Different Lubricants on Deformation Behaviour of IN 718 Alloy in Hot Compression Process
8
作者 Ma Longzhou ①, Zhang Jianmin ①, Zhuang Jingyun ①, Zhong ZengyongCentral Iron and Steel Research Institute, MMI,Beijing (100081), China, P.JanschekThyssen Umformtechnik GMBH 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1997年第1期22-25,共4页
The influence of different lubricants on the deformation behaviour of IN 718 alloy was studied. The results show that, with the improvement of lubrication condition, the deformation of the alloy tends to be homogeneou... The influence of different lubricants on the deformation behaviour of IN 718 alloy was studied. The results show that, with the improvement of lubrication condition, the deformation of the alloy tends to be homogeneous, and the resistance of deformation decreases. Consequently, FR 2 glass lubricant is considered to be an ideal choice when the relationship between stress and strain of IN 718 alloy is measured by means of hot compression experiment. 展开更多
关键词 IN 718 alloy hot compression lubricant List of symbols T ——temperature/℃ ε ——Strain/% ——Strain rate/s -1 η s——Drum shape volume fraction/% V s——Drum shape volume/mm 3 V ——Total volume/mm 3 d
下载PDF
Lowering the cost of large-scale energy storage:High temperature adiabatic compressed air energy storage 被引量:2
9
作者 B.Cárdenas A.J.Pimm +3 位作者 B.Kantharaj M.C.Simpson J.A.Garvey S.D.Garvey 《Propulsion and Power Research》 SCIE 2017年第2期126-133,共8页
Compressed air energy storage is an energy storage technology with strong potential to play a significant role in balancing energy on transmission networks,owing to its use of mature technologies and low cost per unit... Compressed air energy storage is an energy storage technology with strong potential to play a significant role in balancing energy on transmission networks,owing to its use of mature technologies and low cost per unit of storage capacity.Adiabatic compressed air energy storage(A-CAES)systems typically compress air from ambient temperature in the charge phase and expand the air back to ambient temperature in the discharge phase.This papers explores the use of an innovative operating scheme for an A-CAES system aimed at lowering the total cost of the system for a given exergy storage capacity.The configuration proposed considers preheating of the air before compression which increases the fraction of the total exergy that is stored in the fom of high-grade heat in comparison to existing designs in which the main exergy storage medium is the compressed air itself.Storing a high fraction of the total exergy as heat allows reducing the capacity of costly pressure stores in the system and replacing it with cheaper thermal energy stores.Additionally,a configuration that integrates a system based on the aforementioned concept with solar thermal power or low-medium grade waste heat is introduced and thoroughly discussed. 展开更多
关键词 High temperature compressed air energy storage(CAES) Preheating of air Generation integrated energy storage Electric grid balancing Electricity storage Renewable generation intermittence
原文传递
Hot deformation behavior of a near alpha titanium alloy with/without thermal hydrogen processing 被引量:1
10
作者 Qing WANG Dongli SUN Xiuli HAN Weigong WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第2期106-112,共7页
The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activ... The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6A1-2Zr-IMO-IV alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃ can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-IMO-IV alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ·mol^-1 and 390 kJ-mol^-1, respectively, at 800 ℃ and at strain rate 8.3×10^4 s^-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10^-4 s^-1 to 8.3×10^-2 s^-1. 展开更多
关键词 Titanium alloy Thermal hydrogen processing compression at high temperature Hot deformation behavior Apparent activa- tion energy of deformation Microstructure
原文传递
Effect of deformation parameters in unrecrystallization range on microstructural characteristics in Al-bearing hot-rolled TRIP steel
11
作者 Xiao-hui Wang Jian Kang +3 位作者 Yun-jie Li Guo Yuan RDKMisra Guo-dong Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第12期1329-1339,共11页
The scanning electron microscope,transmission electron microscope,optical microscope,X-ray diffraction and hardness tests were used to investigate the effect of deformation parameters in unrecrystallization range on m... The scanning electron microscope,transmission electron microscope,optical microscope,X-ray diffraction and hardness tests were used to investigate the effect of deformation parameters in unrecrystallization range on microstructural characteristics in Al-bearing hot-rolled transformation-induced plasticity steel.The thermomechanical-controlled processing was carried out with thermomechanical simulation machine,and the samples were compressed to compression strains of 0,0.15,0.25 and 0.35 at compression temperatures of 850,900 and 950°C.The results showed that the volume fraction of polygonal ferrite increased with the increasing compression strain,while the volume fraction of retained austenite reached the maximum value at compression strain of 0.25.The volume fraction of polygonal ferrite decreased with the increasing compression temperature,whereas the volume fraction of retained austenite possessed the maximum value at compression temperature of 850°C.Some granular retained austenite was present in uncompressed samples,and some pearlite appeared at large compression strain,while the hardness of the samples exhibited the similar variation tendency to the volume fraction of retained austenite. 展开更多
关键词 Hot-rolled TRIP steel Deformation parameter compression strain compression temperature Microstructural characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部