期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method 被引量:1
1
作者 刘晓宙 朱忆 +1 位作者 张飞 龚秀芬 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期302-307,共6页
In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long therm... In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long thermal relaxation time τ(20 s-30 s) in biological tissues,the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation.The thermal wave model of bio-heat transfer(TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure.In this paper,COMSOL Multiphysics 3.5a,a finite element method software package,is used to simulate the temperature response in tissues based on Pennes and TWMBT equations.We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate.The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating.Besides,thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time.The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising.On the contrary,heat diffusion,which can be described by thermal conductivity,has little effect on the temperature rising. 展开更多
关键词 thermal wave model of bioheat transfer temperature elevation ultrasound irradiation
下载PDF
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes
2
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shea... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 Fault stability Basaltic fault temperature elevation Obsidian content Shallow moonquakes
下载PDF
High temperature deformation and recrystallization behavior of magnesium bicrystals with 90°<1010>and 90°<1120>tilt grain boundaries
3
作者 Kevin Bissa Talal Al-Samman Dmitri A.Molodov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期625-638,共14页
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un... The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature. 展开更多
关键词 Elevated deformation temperatures Plain strain compression Magnesium bicrystals Panorama EBSD Dynamic Recrystallization
下载PDF
Study on the high-temperature properties of heat-resistant steel 309S
4
作者 HUANG Junxia BI Hongyun LI Shi 《Baosteel Technical Research》 CAS 2024年第3期16-22,共7页
The properties of heat-resistant steel 309S at elevated properties were investigated.The results revealed a rapid decrease in the short-time tensile strength at elevated temperatures.At 1 000 ℃,the yield strength and... The properties of heat-resistant steel 309S at elevated properties were investigated.The results revealed a rapid decrease in the short-time tensile strength at elevated temperatures.At 1 000 ℃,the yield strength and tensile strength are 14% and 7% of their respective values at room temperature,respectively.The creep rupture strength was inferred in terms of the relationship between stress and duration time at high temperatures.After 1 000 h,the creep rupture strength is 37.98 MPa at 800 ℃,12.63 MPa at 900 ℃,and 7.27 MPa at 1 000 ℃.The fractures occurring at these high temperatures were intergranular in nature.Under the experimental condition,the fatigue limit stress is 25 MPa.The number of fatigue cycles and crack growth time decrease with increasing stress.Fracture morphology analysis shows that the fatigue cracks initiate on the surface of the sample and propagate through transgranular expansion. 展开更多
关键词 strength at elevated temperature creep rupture strength fatigue limit stress
下载PDF
Response of Rice Cultivars to Elevated Air Temperature and Soil Amendments: Implications towards Climate Change Adaptations and Mitigating Global Warming Potentials
5
作者 Muhammad Aslam Ali S. K. Md. Fazlay Rabbi +8 位作者 Md. Abdul Baten Hafsa Jahan Hiya Shah Tasdika Auyon Md. Shamsur Rahman Deboki Kundu Khairul Amin Sanjit Chandra Barman Tanver Hossain Fariha Binte Nobi 《American Journal of Climate Change》 2024年第3期406-426,共21页
Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv... Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition. 展开更多
关键词 Rice Paddy Soil Amendments CH4 Flux GWPs Elevated Air temperature
下载PDF
Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions
6
作者 Yiping WU Yuzhen JIA +3 位作者 Sha Zhang Yu Liu Hanqing Xiong Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2891-2900,共10页
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti... Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied. 展开更多
关键词 Mg-Gd-Y alloy Elevated temperature compression Flow softening Dynamic recrystallization
下载PDF
Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures 被引量:2
7
作者 昝祥 贺跃辉 +1 位作者 汪洋 夏源明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期45-51,共7页
Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from ... Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture. 展开更多
关键词 TiAl intermetallics high strain rate elevated temperature character tensile properties fracture mode
下载PDF
High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method 被引量:12
8
作者 Muhammad Rashad Fusheng Pan +5 位作者 Yanglu Liu Xianhua Chen Han Lin Rongjian Pan Muhammad Asif Jia She 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第4期270-277,共8页
Outstanding mechanical properties of graphene nanoplatelets(GNPs)make them ideal reinforcement for mass production of composites.In this research,the composites were fabricated by stir-casting method.GNPs were added i... Outstanding mechanical properties of graphene nanoplatelets(GNPs)make them ideal reinforcement for mass production of composites.In this research,the composites were fabricated by stir-casting method.GNPs were added in 1.5 and 3.0 wt.%into Mg–3wt.%Al–1wt.%Zn(AZ31)magnesium alloy.As cast ingots were preheated for one hour and extruded at 350℃ with extrusion ratio of 5.2:1.As extruded AZ31-GNPs composites were micro-structurally characterized with X-ray diffraction,optical microscopy and scanning electron microscopy.Vickers microhardness of synthesized materials was investigated both in parallel and perpendicular to extrusion directions.Room temperature mechanical testing revealed that with increasing GNP’s content,tensile fracture strain was remarkably increased without significant compromise in tensile strength.Furthermore,as extruded AZ31-3GNPs composites were subjected to tensile testing at temperatures ranging from 75℃ to 300℃ with initial strain rate of 2×10^(−3)s^(−1) to evaluate high temperature formability of composite.It was found that like CNTs,GNPs also have the potential to sustain tensile strength at high temperatures. 展开更多
关键词 Metal matrix composites Mechanical properties Stir-casting method Elevated temperatures
下载PDF
CO_2 absorption with ionic liquids at elevated temperatures 被引量:7
9
作者 Lu Bai Dawei Shang +3 位作者 Mengdie Li Zhongde Dai Liyuan Deng Xiangping Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1001-1006,共6页
COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limit... COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limits the COabsorption application at elevated temperature, but also the determination of the operation condition of the COdesorption generally occurring at higher temperature. This work mainly reported COsolubilities in ILs at elevated temperatures and related properties were also provided. 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([CnMIm][TfN]) ILs were selected as physical absorbents for COcapture in this work due to their relative higher COabsorption capacities and good thermal stabilities. The long-term stability tests showed that [CnMIm][TfN] is thermally stable at 393.15 K for long time. COsolubilities in [CnMIm][TfN] were systematically determined at temperatures from 353.15 K to 393.15 K. It demonstrated that COsolubility obviously increases with the increase of pressure while slightly decreases with increase of temperature. As the length of alkyl chain on the cation increases, COsolubility in ILs increases. Additionally, the thermodynamic properties including the Gibbs free energy, enthalpy, and entropy of COwere also calculated. 展开更多
关键词 Ionic liquids CO2 capture Elevated temperature Pre-combustion
下载PDF
Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature 被引量:6
10
作者 ZHANG Xiaohua LIU Daoxin 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期266-271,共6页
An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented.... An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350°C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350°C. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening. 展开更多
关键词 titanium alloys fretting fatigue elevated temperature shot peening ion beam enhanced deposition
下载PDF
A new die-cast magnesium alloy for applications at higher elevated temperatures of 200-300℃ 被引量:6
11
作者 Xixi Dong Lingyun Feng +2 位作者 Shihao Wang Eric A.Nyberg Shouxun Ji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期90-101,共12页
The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced devel... The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃. 展开更多
关键词 Magnesium alloys High pressure die casting Elevated temperatures MICROSTRUCTURE Mechanical properties
下载PDF
Effects of Y content and temperature on the damping capacity of extruded Mg-Y sheets 被引量:9
12
作者 Y.T.Tang C.Zhang +5 位作者 L.B.Ren W.Yang D.D.Yin G.H.Huang H.Zhou Y.B.Zhang 《Journal of Magnesium and Alloys》 SCIE 2019年第3期522-528,共7页
The damping behavior of extruded Mg-xY(x=0.5,1.0,3.0 wt.%)sheets were investigated in detail concerning the effects of Y addition and temperature,and the relationship between damping capacity and yield strength was di... The damping behavior of extruded Mg-xY(x=0.5,1.0,3.0 wt.%)sheets were investigated in detail concerning the effects of Y addition and temperature,and the relationship between damping capacity and yield strength was discussed.At room temperature(RT),with Y content increasing from 0.5%to 3.0%,the damping capacity(Q-1)significantly decreased from 0.037 to 0.015.For all the studied sheets,the relationship between strain amplitude and Q-1 fitted well with the Granato and Liicke(G-L)dislocation damping model.With temperature increased,the G-L plots deviated from linearity indicating that the dislocation damping was not the only dominate mechanism,and the grain boundary sliding(GBS)could contribute to damping capacity.Consequently,the Q-1 increased remarkably above the critical temperature,and the critical temperature increased significantly from 50℃ to 290℃ with increasing Y contents from 0 to 3.0wt.%.This result implied that the segregation of Y solutes at grain boundary could depress the GBS,which was consistent with the recent finding of segregation tendency for rare-earth solutes.The extruded Mg-IY sheet exhibited slightly higher yield strength(Rp0.2)and Q-1 comparing with high-damping Mg-0.6Zr at RT.At an elevated temperature of 325℃,the Mg-IY sheet had similar Q-1 but over 3 times larger Rp0.2 than that of the pure Mg.The present study indicated that the extruded Mg-Y based alloys exhibited promising potential for developing high-performance damping alloys,especially for the elevated-temperature application. 展开更多
关键词 Extruded sheets Mg-Y alloys Damping capacity Granato and Lücke model Elevated temperature
下载PDF
The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize 被引量:5
13
作者 SHAO Rui-xin YU Kang-ke +5 位作者 LI Hong-wei JIA Shuang-jie YANG Qing-hua ZHAO Xia ZHAO Ya-li LIU Tian-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1783-1795,共13页
Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer m... Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer maize during its reproductive growth stage in the North China Plain,which is likely to cause irreversible crop damage.This study investigated the effects of elevating temperature(ET)treatment on the yield component of summer maize,beginning at the 9th unfolding leaf stage and ending at the tasseling stage.Results demonstrated that continuous ET led to a decrease in the elongation rate and activity of silks and an elongated interval between anthesis and silking stages,and eventually decreased grain number at ear tip and reduced yield.Although continuous ET before tasseling damaged the anther structure,reduced pollen activity,delayed the start of the pollen shedding stage,and shortened the pollen shedding time,it was inferred,based on phenotypical and physiological traits,that continuous ET after the 9th unfolding leaf stage influenced ears and therefore may have more significant impacts.Overall,when maize plants were exposed to ET treatment in the ear reproductive development stage,the growth of ears and tassels was blocked,which increased the occurrence of barren ear tips and led to large yield losses. 展开更多
关键词 summer maize North China Plain elevating temperatures reproductive stage barren ear tip YIELD
下载PDF
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES 被引量:4
14
作者 G.Z.Kang Q.Gao J.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期431-436,共6页
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room a... Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 4 00-600℃ for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results. 展开更多
关键词 constitutive model RATCHETING elevated temperature multiaxial loading
下载PDF
Characterization of mechanical properties of aluminum cast alloy at elevated temperature 被引量:6
15
作者 Shuiqiang ZHANG Yichi ZHANG +5 位作者 Ming CHEN Yanjun WANG Quan CUI Rong WU D.AROLA Dongsheng ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期967-980,共14页
The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer ba... The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer based on the digital image correlation (DIC) is developed to achieve strain measurements without damage to the specimen. The optical extensometer is validated and used to monitor dynamic strains during the mechanical experiments. Results show that Young's modulus of the cast alloy decreases with the increasing temperature, and the percentage elongation to fracture at 100 ℃ is the lowest over the temperature range evaluated from 25 ℃ to 300 ℃. In the LCF test, the fatigue strength coefficient decreases, whereas the fatigue strength exponent increases with the rising temperature. The fatigue ductility at 100 ℃. As expected, the resistance to and changes from 200 ℃ to 300 ℃. coefficient and exponent reach maximum values creep decreases with the increasing temperature 展开更多
关键词 mechanical behavior aluminum(A1)cast alloy elevated temperature digital image correlation(DIC) optical extensometer
下载PDF
Effect of Yttrium on Microstructures and Properties at Elevated Temperature of Mg-0.8Zr-0.35Zn Alloys 被引量:4
16
作者 梁维中 宁志良 +2 位作者 王海波 刘洪德 刘洪汇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期268-271,共4页
The effects of Y addition on microstructures and properties of as-cast and solid solutioning and aging treated Mg-0.8Zr-0.35Zn alloys at elevated temperature (250 ℃) were investigated by the use of XJG-04 optical mic... The effects of Y addition on microstructures and properties of as-cast and solid solutioning and aging treated Mg-0.8Zr-0.35Zn alloys at elevated temperature (250 ℃) were investigated by the use of XJG-04 optical microscopy, JCXA-733 electron probe, D/max-rB X-ray diffractometer (XRD) and WDW-200 electronic universal material testing machine. The results show that the microstructures of as-cast and heat treated Mg-0.8Zr-0.35Zn alloys with Y addition are refined and a new phase, Mg_(24)Y_5, is formed. At 250 ℃, the strength at elevated temperature of the alloys increases with increasing amount of Y addition, but relative elongation and area reduction decreases. The tendency of brittle fracture of fractured surface at elevated temperature is enlarged and fracture is changed from ductile into cleavage. 展开更多
关键词 metal materials MICROSTRUCTURES elevated temperature properties rare earth metal
下载PDF
Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures 被引量:4
17
作者 WANG Zhen-bo HAN Shuo +2 位作者 SUN Peng LIU Wei-kang WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1459-1475,共17页
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F... In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance. 展开更多
关键词 engineered cementitious composites hybrid fiber basalt fiber mechanical properties elevated temperature
下载PDF
Influence of TiB_2 nanoparticles on elevated-temperature properties of Al-Mn-Mg 3004 alloy 被引量:4
18
作者 Kun LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期771-778,共8页
Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interden... Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interdendritic grain boundarieswith a size range of20?80nm,which is confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD).Therefore,the volume fraction of the dispersoid free zones is greatly reduced and the motion of grain boundaries and dislocations isinhibited more effectively at elevated temperature.After peak precipitation heat treatment,the yield strengths in the alloy with3%TiB2addition at room temperature and300°C were increased by20%and13%respectively,while the minimum creep rate at300°Cwas reduced to only1/5of the base alloy free of TiB2,exhibiting a considerable improvement of elevated-temperature properties inAl?Mn?Mg alloys. 展开更多
关键词 Al-Mn-Mg 3004 alloy TiB2 nanoparticle dispersoid free zone elevated temperature property creep
下载PDF
Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures 被引量:3
19
作者 Josip Brnic Ji-tai Niu +2 位作者 Goran Turkalj Marko Canadija Domagoj Lanc 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期39-45,共7页
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to ... The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material. 展开更多
关键词 AISI 304 mechanical properties elevated temperature creep tests constitutive model
下载PDF
Development of New Wear-Resistant Surface Coating at Elevated Temperature 被引量:3
20
作者 LI Shang-ping FENG Di LUO He-li ZHANG Xi-e CAO Xu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期37-40,59,共5页
Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3... Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3 C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3 Al and carbide particle reinforced Ni3 Al matrix composite was formed on the welding layers. Cr3 C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The CrTC3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23 C6 were formed, indicating that a good bond has been formed. The hardness of Cr7 C3/Ni3 Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, CrTC3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7 C3/ Ni3 Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material. 展开更多
关键词 NI3AL chromium carbide COMPOSITE wear resistance elevated temperature
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部